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1 Derivation of the Variance of a Control Variate

Estimator with Known Expectations

We derive the variance of a control variate estimator 𝐹 (Eq. 2 in the

main paper), assuming that the expectation 𝐺𝑖 of the 𝑖-th control

variate 𝑔𝑖 is known. To simplify the derivation, we treat the control

variate coefficients 𝛽𝑖 as fixed. Thus, this derivation corresponds to

the conditional variance of 𝐹 given the coefficients. This leads to

the following expression:
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where 𝜎2 ( ¯𝑓 ) = 𝜎2 (𝑓 (𝑥))/𝑛, and 𝜎2 (·, ·) denotes the covariance

between two random variables. The second term in Eq. 1 is simplified

as follows:
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Also, the covariance term in Eq. 1 is expressed as:
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By substituting Eqs. 2 and 3 into Eq. 1, we arrive at the final expres-

sion for the variance:
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2 Derivation of the Variance of Our Control Variate

Estimator

We relax the assumption that the expectations 𝐺𝑖 of the control

variates 𝑔𝑖 are known, and instead replace them with their unbiased

estimates
¯ℎ𝑖 , which are assumed to be independent across pixels.

Under this change, the variance expressionwith known expectations

(Eq. 1) transforms into:

𝜎2 (𝐹 ) = 𝜎2

(
¯𝑓 −

𝑘∑︁
𝑖=1

𝛽𝑖 (𝑔𝑖 − ¯ℎ𝑖 )
)

= 𝜎2 ( ¯𝑓 ) + 𝜎2

(
𝑘∑︁
𝑖=1

𝛽𝑖𝑔𝑖

)
− 2𝜎2

(
¯𝑓 ,

𝑘∑︁
𝑖=1

𝛽𝑖𝑔𝑖

)
+ 𝜎2

(
𝑘∑︁
𝑖=1

𝛽𝑖 ¯ℎ𝑖

)
.

(5)

This modification introduces an additional error term, i.e., the last

term in Eq. 5. Since
¯ℎ𝑖 is independent across pixels, this additional

term can be simplified as follows:
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Since the variance of our control variate estimator (Eq. 5) shares

all terms with the known-expectation case (Eq. 1), except for the

additional error term, we obtain the final expression for the variance

by adding the error term from Eq. 6 to Eq. 4:
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. (7)
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Fig. 1. Our results with and without the symmetric penalty. Adopting the

penalty allows our method (c) to reduce high-frequency noise compared to

the case without it (b), due to improved error estimation of independent pixel

estimates. We use 192 spp for the test. 3D model courtesy of MrChimp2313.

3 Relation to IDUW [Back et al. 2023]

Let us express the estimator of IDUW applied to each pixel 𝑐 , which

uses the same input (CRN and PT) as our method and adopts our

notations, as follows:

𝐹𝑐 = 𝛽𝑐 ¯ℎ𝑐 +
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𝑖∈Ω′

𝑐
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∑︁
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𝑐

𝛽𝑖 ( ¯𝑓𝑐 − 𝑔𝑖 ), (8)

where the neighboring pixel set Ω′
𝑐 includes all pixels in an image

window, excluding pixel 𝑐 itself. If we instead define a set Ω𝑐 that

includes the center pixel 𝑐 , then Eq. 8 can be rewritten as:
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∑︁
𝑖∈Ω𝑐

𝛽𝑖 ¯ℎ𝑖 +
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Note that
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∑
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∑
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∑
𝑖∈Ω𝑐
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1 used in their method.

The transformed expression (Eq. 9) corresponds to the control

variate estimator (Eq. 7) in our paper. A key difference, however, is

that the coefficients 𝛽𝑖 in IDUW are determined heuristically using

the variances of
¯𝑓𝑐 − 𝑔𝑖 , rather than being selected optimally as in

our method.

4 Additional Analyses

Analysis of the symmetric penalty (Sec. 4 in the main paper). To
estimate the per-pixel errors of independent pixel estimates in the

PT image, we use a cross-bilateral filter (see Eq. 11 in themain paper).

Because this error estimation is imperfect due to the simplicity of

the filter, we additionally employ a symmetric penalty. Since the

representation of the optimal coefficients of control variates (Eq. 10

in the main paper) does not include this symmetric term, adopting

it can be regarded as a heuristic.

To assess the practical benefit of this heuristic, we analyze the

relMSE values of our chosen design, which uses the cross-bilateral

filter, on ten test scenes (listed in Table 1 of the main paper), both

with and without the symmetric penalty. We use 192 spp for the

evaluation. In addition, we perform the same analysis with oracle
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Fig. 2. Results of our technique when selecting 𝑘 control variates using

𝑘-nearest neighbor (𝑘-NN) selection (b) based on pixel estimates in the

CRN image, and when using fixed neighboring pixels (i.e., all pixels within

an image window) (c). In both cases, we set 𝑘 = 25. While the 𝑘-NN selec-

tion introduces higher bias than the alternative, it suppresses noise more

effectively, thereby reducing the relMSE. 3D model courtesy of Jay-Artist.
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Fig. 3. Results of our method with different strategies for selecting𝑘-nearest

neighbors: (b) random selection, (c) G-buffer-based selection, and (d) our

chosen approach using pixel colors in the CRN image. While G-buffer-

based selection (c) reduces noise near geometric edges compared to random

selection (b), it introduces more noise in flat regions than our chosen design

(d). We use 192 spp for the evaluation. 3D model courtesy of NovaAshbell

(Classroom) and Jay-Artist (Kitchen).

errors (i.e., the squared differences between independent pixel esti-

mates and ground-truth values), instead of the errors estimated by

the filter.

When the errors are estimated perfectly (i.e., with oracle errors),

adopting this heuristic yields errors that are on average only 5%

higher than in the case without the heuristic. This result indicates

that introducing the symmetric penalty term does not strongly vi-

olate the theory (Eq. 10 in the main paper). In contrast, when the

errors are estimated using the cross-bilateral filter, the heuristic

provides an average 15% improvement in relMSE. Fig. 1 shows a

qualitative comparison of our method with and without the sym-

metric penalty, demonstrating that the heuristic helps reduce high-

frequency noise caused by inaccurate error estimation.

Analysis of control variate selection. We select𝑘 neighboring pixels

for each center pixel within a search window of size 11 × 11, based

on the squared difference between the center and neighboring pixel

estimates in the correlated input (CRN). We set 𝑘 = 25 as the default
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value. Since the bias of our control variate technique arises from

the dependency between the control variate coefficients and the

input pixel estimates, selecting neighboring pixels using their values

becomes a source of bias. An alternative is to select these control

variates in a data-independent manner to avoid such bias. As an

example, we can select all pixels within a 5 × 5 window, resulting in

the same number of control variates (i.e., 25).

Fig. 2 compares the squared bias and relMSE for the Kitchen

scene between data-dependent selection using the 𝑘-nearest neigh-

bors and the data-independent alternative. Our chosen design in-

creases the squared bias by 16.5% compared to the alternative, due

to the data dependency. However, it achieves a 27.7% reduction in

relMSE by lowering noise through the selection of more correlated

neighboring estimates. This result shows a trade-off between bias

and overall error (relMSE). In the main paper, we adopt the 𝑘-nearest

neighbor selection because the additional squared bias introduced

by data dependency is generally smaller than the resulting noise

reduction.

We also evaluate two alternative strategies for selecting the 𝑘-

nearest neighbors, instead of using pixel estimates from the CRN

image: (1) random selection, where𝑘 neighbors are chosen randomly,

and (2) G-buffer-based selection, where neighbors are chosen ac-

cording to a geometric difference between the center pixel and its

neighbors. Specifically, we compute the difference as 1− exp(−∥𝑎 −
𝑎𝑖 ∥2) exp(−∥𝑛 − 𝑛𝑖 ∥2), where 𝑎 − 𝑎𝑖 and 𝑛 − 𝑛𝑖 denote the differ-

ences in albedo and normal values between the center pixel and

neighboring pixel 𝑖 , respectively.

As shown in Fig. 3, G-buffer-based selection reduces noise com-

pared to random selection. However, it introduces more noise in flat

regions than our chosen design, which relies on the pixel estimates

in the CRN image.
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