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1 Derivation of the Variance of a Control Variate
Estimator with Known Expectations

We derive the variance of a control variate estimator F (Eq. 2 in the
main paper), assuming that the expectation G; of the i-th control
variate g; is known. To simplify the derivation, we treat the control
variate coefficients f; as fixed. Thus, this derivation corresponds to
the conditional variance of F given the coefficients. This leads to
the following expression:
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where o?(f) = ¢?(f(x))/n, and 62(-,-) denotes the covariance
between two random variables. The second term in Eq. 1 is simplified
as follows:
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Also, the covariance term in Eq. 1 is expressed as:
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By substituting Eqgs. 2 and 3 into Eq. 1, we arrive at the final expres-
sion for the variance:

G(F) = (o (F(0) + BTV — 287V, ). @

2 Derivation of the Variance of Our Control Variate
Estimator

We relax the assumption that the expectations G; of the control

variates g; are known, and instead replace them with their unbiased

estimates h;, which are assumed to be independent across pixels.

Under this change, the variance expression with known expectations

(Eq. 1) transforms into:
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This modification introduces an additional error term, i.e., the last
term in Eq. 5. Since h; is independent across pixels, this additional
term can be simplified as follows:

k
oz(zlﬂ,-fu) Z;ﬁz o (hi) = ~ Zﬁz 2(hix)) = —ﬁ ViB.
(©)

Since the variance of our control variate estimator (Eq. 5) shares
all terms with the known-expectation case (Eq. 1), except for the
additional error term, we obtain the final expression for the variance
by adding the error term from Eq. 6 to Eq. 4:

o () = - (o (FG) + BTV ~ 26TV + BTVB) . ()
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(a) Reference, 65K spp (b) Ours without

symmetric penalty

(c) Ours with
symmetric penalty

Fig. 1. Our results with and without the symmetric penalty. Adopting the
penalty allows our method (c) to reduce high-frequency noise compared to
the case without it (b), due to improved error estimation of independent pixel
estimates. We use 192 spp for the test. 3D model courtesy of MrChimp2313.

3 Relation to IDUW [Back et al. 2023]

Let us express the estimator of IDUW applied to each pixel ¢, which
uses the same input (CRN and PT) as our method and adopts our
notations, as follows:

Fe=pehe+ ) Pihi+ D, Pife =g, ®)
ieQ i€eQl
where the neighboring pixel set Q/, includes all pixels in an image
window, excluding pixel c itself. If we instead define a set Q. that
includes the center pixel ¢, then Eq. 8 can be rewritten as:

Fe = Z Bihi + Z Bi(fe - i)
i€eQ. i€eQ.
=fe= D BilGi— ).
i€Q.
Note that };cqr Bi(fe — i) = Yieq, Bi(fc — gi) because of fc = g.
and Y ;eq, Bi fi = fe due to the normalization constraint 3’ icq, Bi =
1 used in their method.

The transformed expression (Eq. 9) corresponds to the control
variate estimator (Eq. 7) in our paper. A key difference, however, is
that the coefficients f; in IDUW are determined heuristically using
the variances of f. — §;, rather than being selected optimally as in
our method.

©

4 Additional Analyses

Analysis of the symmetric penalty (Sec. 4 in the main paper). To
estimate the per-pixel errors of independent pixel estimates in the
PT image, we use a cross-bilateral filter (see Eq. 11 in the main paper).
Because this error estimation is imperfect due to the simplicity of
the filter, we additionally employ a symmetric penalty. Since the
representation of the optimal coefficients of control variates (Eq. 10
in the main paper) does not include this symmetric term, adopting
it can be regarded as a heuristic.

To assess the practical benefit of this heuristic, we analyze the
relMSE values of our chosen design, which uses the cross-bilateral
filter, on ten test scenes (listed in Table 1 of the main paper), both
with and without the symmetric penalty. We use 192 spp for the
evaluation. In addition, we perform the same analysis with oracle
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Squared bias 0.000127

relMSE 0.0047 0.0060
(a) Reference (b) Ours with k-NN (c) Ours with fixed
65K spp 192 spp neighbors, 192 spp

Fig. 2. Results of our technique when selecting k control variates using
k-nearest neighbor (k-NN) selection (b) based on pixel estimates in the
CRN image, and when using fixed neighboring pixels (i.e., all pixels within
an image window) (c). In both cases, we set k = 25. While the k-NN selec-
tion introduces higher bias than the alternative, it suppresses noise more
effectively, thereby reducing the relMSE. 3D model courtesy of Jay-Artist.

CLASSROOM 0.0147 0.0119 0.0094 relMSE
KITCHEN 0.0077 0.0057 0.0047 relMSE

(a) Reference (b) Ours w/  (¢) Ours w/  (d) Ours w/  (e) Reference
random G-buffers colors 65K spp

Fig. 3. Results of our method with different strategies for selecting k-nearest
neighbors: (b) random selection, (c) G-buffer-based selection, and (d) our
chosen approach using pixel colors in the CRN image. While G-buffer-
based selection (c) reduces noise near geometric edges compared to random
selection (b), it introduces more noise in flat regions than our chosen design
(d). We use 192 spp for the evaluation. 3D model courtesy of NovaAshbell
(CrLassroom) and Jay-Artist (KITCHEN).

errors (i.e., the squared differences between independent pixel esti-
mates and ground-truth values), instead of the errors estimated by
the filter.

When the errors are estimated perfectly (i.e., with oracle errors),
adopting this heuristic yields errors that are on average only 5%
higher than in the case without the heuristic. This result indicates
that introducing the symmetric penalty term does not strongly vi-
olate the theory (Eq. 10 in the main paper). In contrast, when the
errors are estimated using the cross-bilateral filter, the heuristic
provides an average 15% improvement in relMSE. Fig. 1 shows a
qualitative comparison of our method with and without the sym-
metric penalty, demonstrating that the heuristic helps reduce high-
frequency noise caused by inaccurate error estimation.

Analysis of control variate selection. We select k neighboring pixels
for each center pixel within a search window of size 11 X 11, based
on the squared difference between the center and neighboring pixel
estimates in the correlated input (CRN). We set k = 25 as the default
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value. Since the bias of our control variate technique arises from
the dependency between the control variate coefficients and the
input pixel estimates, selecting neighboring pixels using their values
becomes a source of bias. An alternative is to select these control
variates in a data-independent manner to avoid such bias. As an
example, we can select all pixels within a 5 X 5 window, resulting in
the same number of control variates (i.e., 25).

Fig. 2 compares the squared bias and relMSE for the KITCHEN
scene between data-dependent selection using the k-nearest neigh-
bors and the data-independent alternative. Our chosen design in-
creases the squared bias by 16.5% compared to the alternative, due
to the data dependency. However, it achieves a 27.7% reduction in
relMSE by lowering noise through the selection of more correlated
neighboring estimates. This result shows a trade-off between bias
and overall error (relMSE). In the main paper, we adopt the k-nearest
neighbor selection because the additional squared bias introduced
by data dependency is generally smaller than the resulting noise
reduction.

We also evaluate two alternative strategies for selecting the k-
nearest neighbors, instead of using pixel estimates from the CRN
image: (1) random selection, where k neighbors are chosen randomly,
and (2) G-buffer-based selection, where neighbors are chosen ac-
cording to a geometric difference between the center pixel and its
neighbors. Specifically, we compute the difference as 1 — exp(—||a —
ail|?) exp(—||Ai — @;||?), where @ — g; and 7 — /; denote the differ-
ences in albedo and normal values between the center pixel and
neighboring pixel i, respectively.

As shown in Fig. 3, G-buffer-based selection reduces noise com-
pared to random selection. However, it introduces more noise in flat
regions than our chosen design, which relies on the pixel estimates
in the CRN image.
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