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Fig. 1. Results of our image-space control variate method, which utilizes two image inputs: one generated via path tracing with independent sampling (PT)
and the other via path tracing with common random numbers (CRN), where identical random seeds are assigned to all pixels, unlike in PT. Both input images
are rendered with 96 samples per pixel (spp), and the relative mean squared error (relMSE) is reported to quantify numerical accuracy. Our method reduces the
variance of each pixel estimate by exploiting correlations among spatially nearby pixel estimates in the CRN image, treating them as control variates. Since
the expectations of these variates are unknown, they are approximated using unbiased pixel estimates from the PT image. The control variate coefficients,
which determine their relative contributions, are then optimally adjusted by accounting for heterogeneous errors in the estimated expectations.

We present an image-space control variate technique to improve Monte

Carlo (MC) integration-based rendering. Our method selects spatially nearby

pixel estimates as control variates to exploit spatial coherence among pixel

estimates in a rendered image without requiring analytic modeling of the

control variate functions. Employing control variates is a classical and well-

established technique for variance reduction in MC integration, typically

relying on the assumption that the expectations of control variates are

readily obtainable. When this condition is met, control variate theory offers

a principled framework for optimizing their use by adjusting coefficients that

determine the relative contribution of each control variate. However, our

image-space approach introduces a technical challenge, as the expectations

of the pixel-based control variates are unknown and must be estimated from

additional MC samples, which are unbiased but inherently noisy. In this

paper, we propose a control variate estimator designed to optimally leverage

such imperfect control variates by relaxing the traditional requirement that

their expectations are known. We demonstrate that our approach, which

estimates the optimal coefficients while explicitly accounting for uncertainty

in the expectation estimates, effectively reduces the variance ofMC rendering

across various test scenes.
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1 Introduction
Monte Carlo (MC) integration is widely used to numerically ap-

proximate the light transport integral [Kajiya 1986], which cannot

be solved analytically. A key advantage of MC integration is that

its convergence rate is independent of the dimensionality of the

integral, thereby circumventing the curse of dimensionality. Since

simulating global illumination involves high-dimensional integrals

due to multiple light interreflections, MC integration-based render-

ing methods, such as path tracing [Kajiya 1986], have become the

standard approach for generating photorealistic images.

In principle, reducing the approximation error in MC rendering

is straightforward because the variance of the resulting estimates is

reduced by half when the number of samples is doubled. However,

in practice, the number of samples required to produce noise-free

images is often prohibitively large, e.g., more than thousands of

samples per pixel. This limitation motivates the development of

optimization techniques that can effectively reduce MC variance

without relying on exhaustive sampling.

One well-known variance reduction technique is the use of con-

trol variates. The core idea is to introduce an auxiliary function

that closely approximates the light transport integrand in order to

exploit the correlation between them. Although the control variate

function can be freely designed, a common strategy is to choose one

whose integral can be computed efficiently, such as a function with
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an analytically solvable form (e.g., polynomials [Crespo et al. 2021;

Salaün et al. 2022]). By evaluating both the original integrand and

the control variate function using the same set of random samples,

the control variate estimator can reduce MC variance due to their

correlation.

An alternative strategy is to relax the requirement that control

variates must have tractable integrals, i.e., known expectations. In-

stead, the unknown expectations are replaced with unbiased esti-

mates. This approach offers greater flexibility in selecting control

variate functions and removes the need to model them using sim-

ple analytical forms. A notable example is the image-space scheme

proposed by Rousselle et al. [2016], which demonstrates effective

variance reduction in re-rendering scenarios, such as editing specific

parts of a scene. In this method, pixel estimates from a previously

rendered image serve as control variates for corresponding pixels

in a newly rendered image. This technique can effectively reduce

variance, especially when the pre-rendered image was computed

with more samples than the new one, as estimated expectations can

be less noisy than the current pixel estimates.

In this paper, we adopt this flexible approach that does not rely

on control variates with known expectations, and we present an

image-space control variate framework in which pixel estimates

themselves act as control variates, following the idea introduced by

Rousselle et al. [2016]. However, unlike their method, our approach

is designed for general rendering scenarios where free information,

such as a pre-rendered image, is not available. The main technical

contributions of this work are as follows:

• Regression-based control variate estimator: We introduce

a per-pixel estimator that leverages neighboring pixel es-

timates as control variates using a least-squares regression.

This regression locally adjusts the relative importance of each

control variate based on its correlation with the original MC

estimate.

• Penalized regression for heteroscedasticity: We formulate a

penalized least-squares regression that estimates optimal co-

efficients for the control variates while accounting for hetero-

geneous uncertainty in the estimation of their expectations.

We demonstrate that our control variate framework, which incor-

porates both the varying correlation of control variates with the

original MC estimates and the heterogeneity of estimation errors,

achieves effective variance reduction, as illustrated in Fig. 1.

2 Related Work
Exploiting control variates has been widely adopted to reduce MC

variance, which typically involves devising auxiliary functions, i.e.,

control variate functions. While the functions can be designed arbi-

trarily, a common practice is to select simple forms close to the target

function so that their expectations can be computed analytically or

at low cost, unlike the original function.

Such traditional design choices for control variates have been

adopted for specific MC integrals in rendering, such as ambient

lighting term [Lafortune and Willems 1995b], diffuse-only illumi-

nation (e.g., radiosity) [Szirmay-Kalos et al. 2001], and direct il-

lumination, either under a constant visibility assumption [Szécsi

et al. 2004] or using an approximate visibility field [Clarberg and

Akenine-Möller 2008]. Lafortune and Willems [1995a] also explored

a radiance approximation based on a five-dimensional tree structure,

which was employed both as a control variate and as an importance

sampling distribution. Spherical harmonics (SH) representations of

environment lighting or BRDFs have also been adopted as control

variates [Belcour et al. 2018; Mehta et al. 2012].

A more sophisticated approach to designing control variate func-

tions, while still satisfying the requirement that their expectations

can be computed easily, is to leverage neural networks [Müller et al.

2020; Subr 2021]. For example, Müller et al. [2020] integrated nor-

malizing flows into a neural network that learns control variates

and applied this neural control variate to estimate reflected radiance

at a path vertex, i.e., a surface point intersected by a ray, along with

a neural-network-based path-guiding [Müller et al. 2019].

The combination of control variates and multiple importance sam-

pling (MIS) [Veach and Guibas 1995] has also been explored [Fan

et al. 2006; Hua et al. 2023; Kondapaneni et al. 2019; Owen and Zhou

2000]. For example, Owen and Zhou [2000] demonstrated that MIS

can be further improved using control variates defined over sam-

pling distribution functions. Fan et al. [2006] applied this enhanced

MIS framework to direct illumination. Additionally, Kondapaneni

et al. [2019] derived optimal MIS weights without non-negativity

constraints and established a theoretical connection between these

weights and control variates. This framework was later extended

into a practical solution for global illumination by Hua et al. [2023].

An alternative direction is to construct control variates using

auxiliary functions of random samples in the primary sample space,

rather than defining them in a local path space (e.g., at a path ver-

tex). Crespo et al. [2021] and Salaün et al. [2022] demonstrated that

designing such functions using polynomials can reduce MC noise

while taking advantage of the tractable integrals of the polynomials.

Crespo et al. [2021] further improved their control variate estimator

by adaptively constructing the polynomials using a nested quadra-

ture rule, and Salaün et al. [2022] showed that the control variate

estimator can asymptotically outperform the straightforward MC

estimator, i.e., the sample mean at a pixel, which corresponds to a

constant approximation.

Image-space control variates. A simpler alternative to the afore-

mentioned approaches is to use pixel estimates as control variates,

replacing their expectations with unbiased estimates rather than

explicitly constructing a control variate function with a tractable

integral. Rousselle et al. [2016] adopted this approach and applied

it to two specific rendering scenarios: (1) scene editing, where a

pre-rendered image can be used as input, and (2) gradient-domain

reconstruction, where image gradients computed by a path-shifting

algorithm [Kettunen et al. 2015] are available. This control variate

framework has also been extended into a recursive form for inverse

rendering [Nicolet et al. 2023] and into a residual path integral for

complex re-rendering scenarios, such as moving objects [Xu et al.

2024].

Inspired by prior image-space work [Rousselle et al. 2016], we

introduce a control variate technique that leverages spatially nearby

pixel estimates as control variates. However, our approach is de-

signed for a more general rendering scenario, where we cannot

exploit extra information (e.g., a pre-rendered image) or rely on a
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strong correlation between the original pixel estimates and the con-

trol variates, as achieved via sophisticated path-shifting in gradient-

domain rendering.

Instead, our approach constructs a per-pixel control variate esti-

mator using least-squares regression. This formulation allows for

the efficient adjustment of coefficients across multiple control vari-

ates, based on their varying degrees of correlation with the original

MC estimates. We further extend this framework to a penalized

least-squares regression that accounts for heterogeneous variances

in the estimated expectations of the control variates.

Multilevel Monte Carlo. Multilevel Monte Carlo (MLMC) [Giles

2008, 2015], which performs an MC simulation with multiple levels

of approximation, is related to control variate techniques, since a

relatively cheap but coarse approximation serves as a control variate

for a more expensive but accurate approximation [Li andWare 2024].

In rendering, Keller [2001] introduced an interpolation scheme on

an image hierarchy with different discretization levels. Recently,

Dereviannykh et al. [2025] proposed a two-level MLMC framework

in which radiance caching with a neural network serves as a low-

level (and fast) approximation of path tracing. Unlike these MLMC

techniques, our method does not require computing multiple levels

of approximation with varying costs. Instead, we formulate neigh-

boring pixel estimates as multiple control variates and investigate

their optimal weighting.

3 Theoretical Background and Problem Specification
This section provides a brief theoretical overview of control variates

and describes the target problem to which we apply image-space

control variates. Consider a Monte Carlo (MC) integration that

numerically approximates the integral of a function 𝑓 over a unit

domain X:

𝐹 =

∫
X
𝑓 (𝑥)𝑑𝑥 ≈ ¯𝑓 =

1

𝑛

𝑛∑︁
𝑠=1

𝑓 (𝑥𝑠 ), (1)

where 𝑛 is the number of samples, and the integrand 𝑓 (𝑥) is eval-
uated at independent random samples 𝑥𝑠 drawn uniformly from

X. This basic estimator, the sample mean
¯𝑓 , provides an unbiased

estimate of the true value 𝐹 , but it often requires a large num-

ber of samples to reduce its approximation error, i.e., the variance

𝜎2 ( ¯𝑓 ) = 𝜎2 (𝑓 (𝑥))/𝑛, to an acceptable level.

To reduce the variance of the MC estimator, let us consider the

case where we have 𝑘 control variate functions 𝑔𝑖 , for 1 ≤ 𝑖 ≤ 𝑘 ,

which may be correlated with the original function 𝑓 . The MC

integration can then be reformulated using these auxiliary functions

as:

𝐹 =
1

𝑛

𝑛∑︁
𝑠=1

(
𝑓 (𝑥𝑠 ) −

𝑘∑︁
𝑖=1

𝛽𝑖𝑔𝑖 (𝑥𝑠 )
)
+

𝑘∑︁
𝑖=1

𝛽𝑖𝐺𝑖

= ¯𝑓 −
𝑘∑︁
𝑖=1

𝛽𝑖 (𝑔𝑖 −𝐺𝑖 ),

(2)

where 𝛽𝑖 is the coefficient assigned to the 𝑖-th control variate 𝑔𝑖 ,

and 𝐺𝑖 = 𝐸 (𝑔𝑖 ) is its expectation.
Note that the same random samples 𝑥𝑠 are used for both the target

function 𝑓 and control variate functions 𝑔𝑖 to introduce correlation

between
¯𝑓 and 𝑔𝑖 . Since the strength of this correlation may vary

across different variates, the coefficients 𝛽𝑖 should be chosen accord-

ingly. For instance, higher values should be assigned to variates that

are more strongly correlated with the sample mean
¯𝑓 .

To this end, we derive the variance 𝜎2 (𝐹 ) as a function of the

coefficients 𝛽𝑖 , assuming that the expectations 𝐺𝑖 of the control

variates 𝑔𝑖 are known. Under this assumption, the variance can be

expressed as:

𝜎2 (𝐹 ) = 1

𝑛

(
𝜎2 (𝑓 (𝑥)) + 𝜷⊤𝑉𝑔𝜷 − 2𝜷⊤𝑉𝑓 𝑔

)
, (3)

where𝑉𝑔 is the𝑘×𝑘 covariancematrix of the random variables𝑔𝑖 (𝑥),
𝑉𝑓 𝑔 is the 𝑘 × 1 cross-covariance vector between 𝑓 (𝑥) and 𝑔𝑖 (𝑥),
and 𝜷 = [𝛽1, ..., 𝛽𝑘 ]⊤. The derivation of this variance expression is

provided in the supplementary material. Differentiating 𝜎2 (𝐹 ) with
respect to 𝜷 yields:

𝜕𝜎2 (𝐹 )
𝜕𝜷

=
1

𝑛

(
2𝑉𝑔𝜷 − 2𝑉𝑓 𝑔

)
. (4)

We can then determine the optimal coefficients 𝜷∗
by setting the

derivative equal to zero, which yields:

𝜷∗ = 𝑉𝑔
−1𝑉𝑓 𝑔 . (5)

This formulation of the optimal coefficients also appears in prior

work [Kondapaneni et al. 2019; Owen 2013]. Although the opti-

mal coefficients have a closed-form solution (Eq. 5), it depends on

unknown quantities (𝑉𝑔 and 𝑉𝑓 𝑔) that must be estimated. If this

estimation is performed independently of the processed data, i.e.,
¯𝑓

and 𝑔𝑖 , then the control variate estimator (Eq. 2) becomes unbiased,

since 𝐸 (𝑔𝑖 ) = 𝐺𝑖 .

In practice, however, the coefficients are typically estimated from

the data itself, since the bias introduced by the statistical dependency

between the coefficients 𝛽𝑖 and the data is often negligible compared

to the variance of the MC estimator [Owen 2013].

Once this bias is allowed, it becomes natural to estimate the

unknown covariance terms using their sample covariances, leading

to the following solution:

ˆ𝜷
∗
=

(
1

𝑛 − 1

𝑋⊤𝑋
)−1

1

𝑛 − 1

𝑋⊤𝒚

=
(
𝑋⊤𝑋

)−1

𝑋⊤𝒚,

(6)

where 𝑋⊤𝑋/(𝑛 − 1) and 𝑋⊤𝒚/(𝑛 − 1) serve as estimates for the un-

known quantities𝑉𝑔 and𝑉𝑓 𝑔 , respectively. In the equation above, 𝑋

is an𝑛×𝑘 matrix whose 𝑠-th row is given by [𝑔1 (𝑥𝑠 )−𝑔1, ..., 𝑔𝑘 (𝑥𝑠 )−
𝑔𝑘 ]. The vector 𝒚 is defined as 𝒚 = [𝑓 (𝑥1) − ¯𝑓 , ..., 𝑓 (𝑥𝑛) − ¯𝑓 ]⊤.

After determining the estimated optimal coefficients
ˆ𝜷
∗
using

Eq. 6, we can substitute them into the control variate estimator

(Eq. 2) to obtain improved estimates, rather than relying on the

simple MC estimator (Eq. 1).

Notably, the closed-form solution (Eq. 6) corresponds to the nor-

mal equation of ordinary least squares applied to mean-centered

data, i.e., 𝑔𝑖 (𝑥𝑠 ) −𝑔𝑖 and 𝑓 (𝑥𝑠 ) − ¯𝑓 . Since the optimal coefficients can

be estimated directly from the data via this closed-form expression,

this regression approach has been widely adopted to estimate the

optimal coefficients for control variates (e.g., [Fan et al. 2006; Owen

and Zhou 2000; Salaün et al. 2022]).
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BREAKFAST ROOM

BAHTROOM 0.0425 0.0679 0.0148 0.0037 relMSE

0.0699 0.0593 0.0108 0.0024 relMSE
(a) Reference (b) Input (CRN), 96 spp (c) Input (PT), 96 spp (d) CV (baseline), 192 spp (e) Ours, 192 spp (f) Reference, 65K spp

Fig. 2. Results of the image-space control variate techniques, (d) and (e). These techniques select spatially close pixel estimates from the CRN input (b) as
control variates and use the corresponding pixel estimates from the PT input (c) as unbiased estimates of their expectations. The CV (baseline) method (d)
estimates the optimal control variate coefficients while ignoring errors in these expectations, i.e., the variances in the PT image. In contrast, our method (e)
explicitly accounts for such errors when determining the coefficients. This technical distinction allows our approach to achieve lower errors than the baseline
by robustly handling heterogeneous noise in the PT image, such as fireflies. The relMSE values are computed over the full images rather than cropped regions.

Problem specification. We aim to design an image-space control

variate framework grounded in the aforementioned theories related

to control variates. Specifically, we use two input images, CRN and

PT (as shown in Fig. 1), both generated using identical Monte Carlo

rendering settings but with different random number sequences. In

the CRN image, common random numbers are used across all pixels,

while in the PT image, independent random sequences are applied.

Given these inputs, we apply the control variate estimator 𝐹

at each pixel as a pixel-wise estimator, where
¯𝑓 and 𝑔𝑖 in Eq. 2

represent the sample mean estimate at the target pixel and the

estimate at its 𝑖-th neighboring pixel in the CRN image, respectively.

Because the estimator requires the unknown expectation 𝐺𝑖 of the

variate 𝑔𝑖 , we approximate this expectation using the corresponding

pixel value from the PT image. The control variate coefficients are

then computed using the least-squares regression (Eq. 6), and the

estimator 𝐹 is evaluated using the coefficients to generate the output.

This method can be viewed as a direct image-space adaptation of

classical control variate theory. Throughout this paper, we refer to

this straightforward adaptation as CV (baseline).

Fig. 2(d) shows the results of CV (baseline), which produces re-

duced noise compared to the two input images, CRN and PT. How-

ever, the output still exhibits noticeable residual noise, primarily due

to errors in the expectation estimates, especially from noisy pixels

in the PT image. It is important to note that this baseline relies on

optimal coefficients (Eq. 5) derived under the assumption that the

expectations of the control variates are known. This assumption is

violated in our image-space case since the expectations are replaced

with their unbiased estimates. In the following section, we present

a generalization of this baseline framework.

4 Imperfect Image-Space Control Variates
This section presents our control variate framework (Fig. 3), which

explicitly accounts for uncertainty in the expectations of image-

space control variates.

Given a user-specified number of samples per pixel (spp), de-

noted as 2𝑛, we perform MC rendering twice, each with 𝑛 samples,

to generate two input images: CRN and PT. Since we work with

imperfect control variates whose expectations are unknown and

Input (PT) OutputExpectations

Input (CRN)

Variance estimation
(Eq. 11)

Coefficient estimation
(Eq. 10)

Control variate
estimator (Eq. 7)

ḡi

f̄

h̄i

Control variates

Fig. 3. Overview of our image-space control variates framework. We employ
path tracing to generate two types of inputs: PT, which uses independent
random samples across pixels, and CRN, which uses the same random
sequences across pixels. A control variate estimator 𝐹 is then applied to
each pixel (indicated by a small cyan square), leveraging neighboring pixel
estimates 𝑔𝑖 from the CRN image as control variates. Corresponding pixel
estimates ¯ℎ𝑖 from the PT image are used in place of the true expectations
of the control variates. We estimate the variances of the estimates ¯ℎ𝑖 using
Eq. 11, and compute the estimated optimal coefficients ˆ𝜷

∗
through Eq. 10,

taking into account both the correlation between ¯𝑓 and 𝑔𝑖 and the variances
of the ¯ℎ𝑖 . Finally, the control variate estimator (Eq. 7) is evaluated using the
coefficients to produce the final output for each pixel.

must be estimated, we redefine the control variate estimator (Eq. 2)

accordingly:

𝐹 = ¯𝑓 −
𝑘∑︁
𝑖=1

𝛽𝑖
(
𝑔𝑖 − ¯ℎ𝑖

)
, (7)

where
¯ℎ𝑖 represents the estimated pixel value in the PT image, i.e.,

the sample mean
¯ℎ𝑖 = 1/𝑛∑𝑛

𝑠=1
ℎ𝑖 (𝑥𝑖,𝑠 ) that serves as an estimate

of the unknown expectation 𝐺𝑖 .

To apply this estimator 𝐹 to each pixel, we select 𝑘 neighboring

pixels from the CRN image to define 𝑘 control variates 𝑔𝑖 for 1 ≤ 𝑖 ≤
𝑘 . These neighboring estimates serve as control variates to reduce

the noise in the estimate
¯𝑓 at the target pixel in the CRN. Specifically,

we use an 11 × 11 search window centered on the target pixel, and

compute the squared differences ∥ ¯𝑓 − 𝑔𝑖 ∥2
between the estimates

ACM Trans. Graph., Vol. 44, No. 6, Article 205. Publication date: December 2025.
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BREAKFAST ROOM

CLASSROOM

0.0699 0.0593 0.0108 0.0042 0.0024 0.0016 relMSE

0.1414 0.1059 0.0330 0.0172 0.0094 0.0078 relMSE
(a) Reference (b) Input (CRN)

96 spp
(c) Input (PT)

96 spp
(d) CV (baseline) (e) Ours using

sample variances
(f) Ours using
cross-bilateral

(g) Results using
actual errors

(h) Reference
65K spp

Fig. 4. Ablation study of our method. We evaluate two strategies for estimating the variances of the estimates ¯ℎ𝑖 : (e) using sample variances, and (f) using a
pilot estimator (i.e., a cross-bilateral filter), as defined in Eq. 11. To more clearly assess the accuracy of these error estimation strategies, we also include the
results (g), where we use the ground truth errors of ¯ℎ𝑖 in place of the estimated variances 𝜎̂2 ( ¯ℎ𝑖 ) in Eq. 11. These oracle errors are computed as the squared
differences between ¯ℎ𝑖 and their corresponding ground truth values in (h). In both cases, (e) and (f), our method outperforms the baseline approach (d),
which does not account for the variance in ¯ℎ𝑖 , highlighting the practical importance of incorporating such errors when estimating the optimal control variate
coefficients. Our chosen strategy (f), which estimates these errors via Eq. 11, yields better results than using per-pixel sample variances (e).

within this window and the target value
¯𝑓 . We then select the 𝑘-

nearest neighbors based on the differences. In our implementation,

we set 𝑘 = 25 (an analysis of 𝑘 is provided in Sec. 5).

For brevity, we omit the subscript that denotes the target pixel

index (e.g., in 𝐹 and
¯𝑓 ), as the control variate estimator is applied

independently to each pixel.

Given the new estimator (Eq. 7), which employs estimated expec-

tations
¯ℎ𝑖 , we derive its variance 𝜎

2 (𝐹 ) in a manner analogous to

Eq. 3, while additionally accounting for the variance introduced by

¯ℎ𝑖 . The resulting expression is:

𝜎2 (𝐹 ) = 1

𝑛

(
𝜎2 (𝑓 (𝑥)) + 𝜷⊤𝑉𝑔𝜷 − 2𝜷⊤𝑉𝑓 𝑔 + 𝜷⊤𝑉ℎ𝜷

)
, (8)

where 𝑉ℎ is the 𝑘 × 𝑘 covariance matrix of the random variables

ℎ𝑖 (𝑥) in the PT image. This formulation introduces an additional

error term, 𝜷⊤𝑉ℎ𝜷 , compared to the original variance formulation

(Eq. 3), which assumes that the expectations 𝐺𝑖 are exact.

Since the
¯ℎ𝑖 values in the PT image are independently estimated

across pixels, the corresponding covariance matrix 𝑉ℎ becomes

a diagonal matrix, where the 𝑖-th diagonal element is given by

𝜎2 (ℎ𝑖 (𝑥)). The derivation of this variance expression is provided in

the supplementary material.

We then compute the derivative of the variance with respect to 𝜷 ,
which is given by (2𝑉𝑔𝜷 − 2𝑉𝑓 𝑔 + 2𝑉ℎ𝜷)/𝑛. By setting the derivative
to zero, we obtain a closed-form solution for the optimal coefficients:

𝜷∗ =
(
𝑉𝑔 +𝑉ℎ

)−1

𝑉𝑓 𝑔 . (9)

The formulation above clearly indicates that the optimal coeffi-

cients should be adjusted according to the error structure 𝑉ℎ in the

unbiased but noisy estimates
¯ℎ𝑖 . Since this formulation involves

unknown terms, we estimate the optimal coefficients using the

following expression:

𝜷
∗
=

(
1

𝑛 − 1

𝑋⊤𝑋 +𝑉ℎ
)−1

1

𝑛 − 1

𝑋⊤𝒚. (10)

Compared to the original formulation in Eq. 6, this revised expres-

sion incorporates an additional diagonal matrix, 𝑉ℎ , whose 𝑖-th

diagonal element represents the estimated variance 𝜎̂2 (ℎ𝑖 (𝑥)).

The resulting closed-form expression is closely related to

Tikhonov regularization, a widely used technique for stabilizing

least-squares problems that are ill-posed or sensitive to noise by

introducing a penalty matrix [Hansen 2010; Tikhonov and Arsenin

1977].

From this perspective, the estimated covariance 𝑉ℎ serves as a

penalty term that suppresses the magnitude of the 𝑖-th coefficient 𝛽𝑖
when the corresponding error 𝜎̂2 (ℎ𝑖 (𝑥)) is large. This regularization
property offers a principled approach for robustly handling pixel

estimates
¯ℎ𝑖 , whose errors may vary significantly across pixels, as

in the case of fireflies (see Fig. 2).

Variance estimation. To compute the estimated optimal coeffi-

cients using Eq. 10, it is necessary to compute the estimated vari-

ances 𝜎̂2 (ℎ𝑖 (𝑥)). A straightforward approach is to use the sample

variance, i.e., 𝜎̂2 (ℎ𝑖 (𝑥)) =
∑𝑛
𝑠=1

(ℎ𝑖 (𝑥𝑖,𝑠 ) − ¯ℎ𝑖 )2/(𝑛 − 1).
Alternatively, a simple denoising method can be used to gener-

ate pilot estimates, providing a more robust means of estimating

the error in
¯ℎ𝑖 than direct sample variances. For this purpose, we

apply a cross-bilateral filter [Eisemann and Durand 2004] and es-

timate 𝜎2 (ℎ𝑖 (𝑥)) using the squared difference between
¯ℎ𝑖 and the

corresponding denoised value:

𝜎̂2 (ℎ𝑖 (𝑥)) = 𝑛𝜎̂2 ( ¯ℎ𝑖 ) = 𝑛

©­« 1∑
𝑗∈Ω𝑖

𝑤 𝑗

∑︁
𝑗∈Ω𝑖

𝑤 𝑗
¯ℎ 𝑗

ª®¬ − ¯ℎ𝑖


2

. (11)

The weight𝑤 𝑗 allocated to pixel 𝑗 within an 11 × 11 denoising win-

dow is set by𝑤 𝑗 = exp(−∥𝑔 𝑗 − 𝑔𝑖 ∥2/𝜎̂2 (𝑔𝑖 )), where the bandwidth
𝜎̂2 (𝑔𝑖 ) is the estimated variance of the sample mean 𝑔𝑖 .

We also found that enforcing a symmetric penalty by setting the

𝑖-th diagonal element of 𝑉ℎ to 0.5
(
𝜎̂2 (ℎ(𝑥)) + 𝜎̂2 (ℎ𝑖 (𝑥))

)
, where

𝜎̂2 (ℎ(𝑥)) denotes the estimated variance at the target pixel com-

puted using Eq. 11, can further improve the results compared to

using 𝜎̂2 (ℎ𝑖 (𝑥)) alone (see the supplementary material for analysis).

After defining the matrix 𝑉ℎ either from sample variances or via

cross-bilateral filtering, we compute the estimated optimal coeffi-

cients
ˆ𝜷
∗
using Eq. 10, and evaluate the final per-pixel output using

the control variate estimator 𝐹 in Eq. 7.
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As shown in Fig. 4, both approaches that incorporate uncertainty

in the control variates result in a noticeable improvement over

CV (baseline), which does not consider such imperfections. Since

the alternativemethod using the cross-bilateral filter produces better

results than the sample variance approach, we adopt it for all other

experiments presented in this paper.

Implementation details. Implementing our control variate is

straightforward due to its image-space formulation, which does

not require modifications to existing sampling strategies such as

importance sampling. However, it does require access to individ-

ual samples in the CRN image (e.g., 𝑔𝑖 (𝑥𝑠 )) to compute the terms

𝑋⊤𝑋 and 𝑋⊤𝒚 in Eq. 10. As a result, the computational overhead

of constructing these terms increases with the number of samples

𝑛, which is undesirable in offline rendering scenarios where 𝑛 is

typically large.

To mitigate this issue, we adopt a practical surrogate by partition-

ing individual samples into a fixed number of groups and using the

sample mean of each group as a proxy sample for computing 𝑋⊤𝑋
and 𝑋⊤𝒚. These per-pixel group means can be computed without

storing the full set of individual samples. Moreover, the compu-

tational overhead associated with evaluating the control variate

estimator in Eq. 7, using the coefficients from Eq. 10, depends only

on the number of groups rather than on the total number of samples.

We empirically found that using twelve groups offers a good bal-

ance between accuracy and efficiency. For example, the overheads

with 4, 12, and 24 groups were 31.9 ms, 47.7 ms, and 72.2 ms, re-

spectively, when testing the ten scenes in Table 1. Increasing the

group count from 4 to 12 yielded a 16.8% improvement in relMSE,

whereas a further increase from 12 to 24 groups provided only an

additional 2.6% improvement on average. Based on this trade-off,

we adopt twelve groups for all other experiments in the paper.

5 Results and Discussion
This section evaluates the effectiveness of our method in reduc-

ing MC noise compared to other control variate techniques. Our

straightforward image-space adaptation, built upon traditional con-

trol variate theory (described in Sec. 3), is considered a baseline,

referred to as CV (baseline). We performed experiments on ten

scenes from the public repository [Bitterli 2016], as summarized

in Table 1. All tests were conducted on a PC with an AMD Ryzen

Threadripper PRO 5995WX CPU and a single Nvidia GeForce RTX

4090 GPU. The experiments employed the path tracing implementa-

tion in Mitsuba [Jakob 2010], unless stated otherwise. All images

were rendered at a resolution of 1280×720. Numerical accuracy was

measured using the relative mean squared error (relMSE), computed

using reference images rendered with 65K samples per pixel (spp).

Specifically, the relMSE of an estimated image 𝐹 with respect to its

reference 𝐹 is computed as
1

3𝑁

∑𝑁
𝑖=1

∥𝐹𝑖 − 𝐹𝑖 ∥2/(𝐹 2

𝑖
+ 𝜖), where 𝑁

is the number of pixels, 𝐹𝑖 is the grayscale value of the pixel color

𝐹𝑖 , and 𝜖 = 0.01.

Comparisons with image-space control variate techniques. We com-

pare three image-space control variate techniques: CV (baseline),

IDUW [Back et al. 2023], and our method, in terms of numerical

accuracy (Table 1), visual quality (Fig. 8). Both CV (baseline) and

IDUWuse the same input (CRN and PT) as our technique. For IDUW,

we used the public implementation provided by the authors.

The computational overheads of CV (baseline), IDUW, and our

method are 47.2 ms, 67.4 ms, and 47.7 ms, respectively. These differ-

ences are negligible when compared to the sampling time, which

ranges from 8.9 s (Teapot) to 37.7 s (Bathroom) across the five

scenes shown in Fig. 8. Therefore, the comparisons correspond to

equal-time evaluations.

Although IDUW was originally introduced as a low-bias denois-

ing technique, we include it in our evaluation because its image-

space formulation can be reinterpreted as a control variate estimator

(see the supplementary material). The key distinction lies in the

computation of the control variate coefficients: IDUW heuristically

determines them using the variances of pixel estimates in the CRN

image, while our method derives and estimates optimal coefficients.

This technical distinction enables our method to produce both

quantitatively and qualitatively superior results, as shown in Table 1

and Fig. 8. Moreover, our improvement over CV (baseline) highlights

the importance of accounting for uncertainty in the estimated ex-

pectations of control variates.

We further evaluate the numerical convergence of all tested

image-space techniques in Fig. 9. Each method estimates its co-

efficients from the processed pixel estimates, which introduces bias.

However, as demonstrated in the convergence plots, this bias does

not diminish the practical benefits of these techniques, as they con-

sistently outperform the standard MC estimator (PT without control

variates) up to high sample counts (for example, 1536 spp).

The convergence results further demonstrate the practical signif-

icance of accounting for uncertainty in the estimated expectations

of control variates. While the performance gap between CV (base-

line) and our method narrows with increasing sample counts in the

House, Staircase, and Teapot scenes, our method consistently

maintains a significant advantage in all other scenes where MC

noise, as reflected in the errors of the PT estimates, remains rela-

tively high, even at 1536 spp.

Comparisons with control variates using tractable expectations.
Fig. 10 compares with the control variate method proposed

in [Salaün et al. 2022], which uses polynomial functions in the

primary sample space. We refer to this method as CV (polynomi-

als). For testing CV (polynomials), we used the publicly available

code provided by the authors, which was implemented on top of the

PBRT [Pharr et al. 2016] framework. To ensure a fair comparison, we

also used the same framework (PBRT) when evaluating our method.

CV (polynomials) enables analytical computation of the expec-

tations of control variates, effectively eliminating expectation er-

rors. However, it requires the dimensionality of the analytic func-

tion to be fixed and relatively low. This contrasts with image-

space methods, including ours, which can accommodate arbitrarily

high-dimensional scenarios resulting from multiple secondary ray

bounces in path tracing. As a result, a direct comparison with CV

(polynomials) is not meaningful for the general experiments shown

in Table 1 and Figs. 8 and 9.

To allow for a fair comparison, we selected two scenes from

Table 1, House and Teapot, which are primarily lit by direct il-

lumination from environmental lights. We further restricted the
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Table 1. relMSE comparisons with IDUW [Back et al. 2023] and CV (baseline) across different sample counts for ten tested scenes.

Bathroom

spp IDUW Baseline Ours

48 0.0257 0.0535 0.0087

96 0.0150 0.0290 0.0056

192 0.0088 0.0148 0.0037

384 0.0056 0.0081 0.0025

Breakfast Room

IDUW Baseline Ours

0.0208 0.0306 0.0061

0.0158 0.0206 0.0036

0.0086 0.0108 0.0024

0.0046 0.0046 0.0014

Classroom

IDUW Baseline Ours

0.0650 0.1226 0.0200

0.0421 0.0688 0.0143

0.0230 0.0330 0.0094

0.0136 0.0156 0.0063

Door

IDUW Baseline Ours

0.1518 0.2296 0.0705

0.1039 0.1673 0.0363

0.0589 0.1047 0.0202

0.0344 0.0600 0.0117

Glass of Water

IDUW Baseline Ours

0.0951 0.1583 0.0478

0.0692 0.0955 0.0394

0.0529 0.0611 0.0301

0.0362 0.0373 0.0201

Grey & White Room

spp IDUW Baseline Ours

48 0.1270 0.0930 0.0358

96 0.0688 0.0564 0.0211

192 0.0364 0.0313 0.0127

384 0.0186 0.0165 0.0073

House

IDUW Baseline Ours

0.0085 0.0059 0.0032

0.0036 0.0030 0.0015

0.0023 0.0015 0.0009

0.0012 0.0007 0.0005

Kitchen

IDUW Baseline Ours

0.0456 0.0396 0.0152

0.0299 0.0244 0.0083

0.0156 0.0132 0.0047

0.0085 0.0071 0.0029

Staircase

IDUW Baseline Ours

0.0084 0.0073 0.0041

0.0050 0.0037 0.0024

0.0028 0.0019 0.0015

0.0015 0.0010 0.0008

Teapot

IDUW Baseline Ours

0.0065 0.0054 0.0020

0.0034 0.0027 0.0012

0.0015 0.0013 0.0006

0.0009 0.0006 0.0003

0.0008 / 0.000042 0.0009 / 0.000005 relMSE / Squared bias

0.0259 / 0.006719 0.0301 / 0.000821 relMSE / Squared bias

(a) OIDN, 192 spp (b) Ours, 192 spp (c) Reference, 65K spp

GLASS OF WATER

HOUSESquared bias

Squared bias

0.0

>
0.6

0.0

>
0.01

0.0

Fig. 5. Comparison with a neural denoiser, OIDN [Áfra 2025]. While our
technique produces noisier results and higher relMSEs than OIDN, it
achieves a substantially lower squared bias compared to the denoiser. To
compute the bias, we used 300 input images generated with different ran-
dom seeds per scene for both our method and OIDN.

maximum ray depth to exclude indirect illumination, ensuring that

MC noise originates mainly from direct lighting. The corresponding

reference images were also re-rendered under this restricted setting

for consistency. The computational overhead of this method was

approximately 1100 ms, which is higher than the 47.7 ms required

by our method under the same conditions shown in Fig. 10. Since the

provided code is CPU-based, unlike our GPU-based implementation,

we ensured fairness by conducting same-sample comparisons.

As shown in Fig. 10, polynomial approximations of the light

transport integral, such as the tested direct lighting integral, out-

perform the standard MC estimator (PT). Nevertheless, our method

achieves more effective noise reduction by leveraging spatial cor-

relations across pixel estimates, in contrast to CV (polynomials),

which processes each pixel independently without incorporating

information from neighboring pixels. More importantly, our method

offers greater generality, as it does not impose any constraints on

the dimensionality of the integrand.

Comparisons with image denoisers. Our method shares high-level

similarities with denoising methods, as both leverage spatial co-

herence in image space, i.e., the similarity of ground-truth colors

among spatially close pixels. However, unlike denoisers, whose bias

increases when blending pixels with different ground-truth colors,

our bias arises solely from the statistical dependency between con-

trol variate coefficients and the input data. This technical distinction

can lead our technique to yield lower bias than image denoisers.

To analyze this difference, we compare our method with a recent

neural denoiser, Intel’s Open Image Denoise (OIDN) [Áfra 2025],

using its publicly released pre-trained neural network. For OIDN, we

generated and provided PT images (excluding CRN images), along

with G-buffers, as input to the OIDN network.

When testing the ten scenes using 192 spp in Table 1, we observed

that OIDN achieved 2.27× lower relMSE than our method on aver-

age, whereas our squared bias was 15.25× lower. We also include

qualitative comparisons for the Glass of Water and House scenes

in Fig. 5, where the strengths and weaknesses of each method are

evident: OIDN produces smoother but more biased results, while

our technique yields noisier but less biased results.

Analysis of the number of control variates. We utilize 𝑘-nearest

pixel estimates selected from a search window centered at each

pixel. In our tests, we set 𝑘 = 25 using an 11 × 11 search window.

Fig. 11 presents our results where we vary 𝑘 values, ranging from 6

to 100. For higher values of 𝑘 (specifically, 50 and 100), we increased

the search window size to 21 × 21.

The changes in the accuracy of our control variate technique

remain moderate compared to the overall noise reduction achieved

over the input (e.g., CRN). This is because the relative influence of

each control variate is adaptively balanced through the estimated

optimal coefficients
ˆ𝜷
∗
(Eq. 10). Nonetheless, accuracy generally

improves with increasing 𝑘 up to an intermediate value (𝑘 = 25)

without significantly affecting computational overhead. Therefore,

we chose 𝑘 = 25 and used this setting for all other experiments.

We provide additional analyses (e.g., using alternative strategies for

selecting the 𝑘-nearest neighbors) in the supplementary material.

Analysis of the difference in sample rates between CRN and PT
images. By default, we use the same sample count for both input

images, CRN and PT. In Fig. 6, we vary the sample allocation between

the two images and present the results from each configuration.
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We observe a trade-off between correlated noise inherited from

CRN and independent noise introduced by PT. For example, when

allocating more samples to PT (Fig. 6(b)), the results exhibit less

independent noise but more correlated noise, compared to the case

of allocating more samples to CRN (Fig. 6(d)). While the optimal

sample allocation between the two inputs depends on the scene,

we find that our default choice of equal allocation (1:1) provides a

reasonable balance in practice.

Limitations and future work. The effectiveness of control variate
estimators depends on the degree of correlation between the original

MC estimates and the selected control variates. Consequently, our

method may fail to reduce noise effectively when neighboring pixels

in the CRN image exhibit weak correlation, such as in regions with

random noise patterns (e.g., in Fig. 12). In these scenarios, our error

estimation (Eq. 11) can also become inaccurate, as it relies on a

cross-bilateral filter whose weights𝑤 𝑗 are determined by differences

in CRN estimates (e.g., 𝑔 𝑗 − 𝑔𝑖 ). We found that this can result in

energy loss in regions where the estimates are particularly noisy.

Although this issue diminishes at higher sample counts because our

control variate technique is a consistent estimator, improving error

estimation accuracy through enhanced weighting could further

increase robustness. We leave this exploration for future work.

An additional limitation stems from the image-space nature of our

approach. By leveraging spatial correlation, our method inherently

introduces statistical dependencies among output pixel estimates,

resulting in correlated noise. This violates a common assumption

in image denoising techniques [Zwicker et al. 2015], which typi-

cally treat pixel estimates as statistically independent. Therefore,

applying a denoiser designed under this assumption to our output

is not ideal (see Fig. 7). A promising direction for future work is

to design a method-specific denoiser that explicitly accounts for

the correlated errors produced by our method, similar to the recent

denoiser proposed in [Chen et al. 2024] for handling correlated noise

generated by Metropolis light transport [Veach and Guibas 1997].

Furthermore, since our method enables the estimation of per-pixel

errors via Eq. 8, another potential extension is to incorporate an

image-space adaptive sampling strategy [Zwicker et al. 2015] to ef-

fectively reduce the errors in
¯ℎ𝑖 . Finally, it would also be interesting

to explore combining our technique with path-reusing frameworks

that exploit image-space correlation through correlated sampling,

such as gradient-domain rendering [Kettunen et al. 2015; Lehtinen

et al. 2013] and image-space splatting [Tong and Hachisuka 2024].

6 Conclusion
This paper introduces a new per-pixel estimator that operates in

image space and does not require modifications to existing sampling

optimizations, such as importance sampling. Specifically, neighbor-

ing pixel estimates from a correlated input (CRN) are selected as

control variates without explicitly modeling their analytic forms,

and their expectations are estimated using corresponding pixel val-

ues from an independent input (PT). While this design keeps our

method simple and broadly applicable to general rendering sce-

narios, it introduces a key challenge: the control variates can be

unreliable since their estimated expectations are as noisy as the vari-

ates. To address this issue, we propose a strategy based on penalized

0.0027 relMSE0.0024 0.0029
(a) Reference (b) Ours

48:144 spp
(c) Ours

96:96 spp
(d) Ours

144:48 spp
(e) Reference

65K spp

BREAKFAST ROOM

0.0034 relMSE0.0037 0.0051BATHROOM

Fig. 6. Results with different sample allocations between the two input
images (CRN and PT). Given a user-specified total sample count (196 spp),
we divide it between the inputs as follows: (b) 48:144, (c) 96:96, and (d) 144:48
for CRN:PT, respectively.

GREY & WHITE ROOM

BREAKFAST ROOM 0.0024 0.0019 relMSE

relMSE0.0127 0.0066

(a) Reference (c) OIDN+Ours
192 spp

(d) Reference
65K spp

(b) Ours
192 spp

Fig. 7. Image denoising results on our output. We apply a recent denoiser,
OIDN [Áfra 2025], to our output (b). While the denoised images (c) show
reduced errors from the suppression of independent noise, another type of
noise (i.e., correlated noise) remains.

least-squares regression that accounts for the heterogeneous vari-

ances in the estimated expectations. This approach enables robust

exploitation of multiple imperfect control variates.
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BAHTROOM 0.0425 0.0679 0.0088 0.0148 0.0037 relMSE
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(a) Reference (b) Input (CRN), 96 spp (c) Input (PT), 96 spp (d) IDUW, 192 spp (e) CV (baseline), 192 spp (f) Ours, 192 spp (g) Reference, 65K spp

0.0113 0.0015 0.0013 0.0006 relMSE

BREAKFAST ROOM

HOUSE

KITCHEN

TEAPOT

Fig. 8. We compare our method with two image-space control variate techniques: IDUW [Back et al. 2023] and CV (baseline). All methods use the same input
images, as shown in (b) and (c), but differ in how they compute the control variate coefficients. IDUW (d) sets the coefficients based on the variances of pixel
estimates in the CRN image, while CV (baseline) (e) employs least-squares regression but ignores the errors in the estimated expectations, i.e., the noise of
pixel estimates in the PT input. In contrast, our method (f) derives and estimates optimal control variate coefficients by explicitly accounting for these errors.
This distinction enables our approach to achieve more accurate and effective variance reduction.

BAHTROOM BREAKFAST ROOM CLASSROOM DOOR GLASS OF WATER

GREY & WHITE ROOM HOUSE KITCHEN STAIRCASE TEAPOT

Samples per pixel (spp)
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Fig. 9. Numerical convergence of IDUW, CV (baseline), and our method, plotted on a log-log scale. The convergence of the standard MC approach (PT) is
also shown. All control variate techniques introduce bias because their coefficients are estimated from processed data (i.e., pixel estimates). Nevertheless,
these bias errors can be acceptable in practice, as the methods consistently yield lower errors than PT. Moreover, the results demonstrate that accounting for
imperfections in control variates remains important even at high sample counts (e.g., 1536), particularly in scenes with relatively high MC variance.
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TEAPOT 0.0059 0.0045 0.0005 relMSE
(a) Reference (b) PT, 192 spp (c) CV (polynomials), 192 spp (d) Ours, 192 spp (e) Reference, 65K spp

Fig. 10. Comparison with CV (polynomials) [Salaün et al. 2022], which constructs high-dimensional polynomials in the primary sample space and applies
them as control variates independently at each pixel. This approach (c) is effective when the dimensionality of the light transport integrand is low, in contrast
to our image-space method. To ensure a fair comparison, we reduce the dimensionality by disabling indirect illumination in the two tested scenes. Unlike
CV (polynomials), our method (d) leverages spatial correlations across pixels rather than treating each pixel estimate in isolation. This distinction allows our
technique to achieve more effective variance reduction without relying on control variate functions with tractable integrals.
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(g)    = 100
(1316.8 ms)

(h) Reference
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Fig. 11. Analysis of our method with varying numbers of control variates. We vary the number of control variates, 𝑘 , from 6 (c) to 100 (g), and report both the
corresponding errors and computational overhead. The results indicate that varying 𝑘 does not significantly impact the final accuracy of our method relative
to the improvements achieved over the input (b). It is also observed that increasing 𝑘 tends to improve overall accuracy up to 𝑘 = 25 without introducing a
substantial increase in computational cost. Based on this analysis, we adopt 𝑘 = 25 as the default setting for all other experiments.
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Fig. 12. Failure cases of image-space control variate techniques. All tested methods, including IDUW (d), CV (baseline) (e), and ours (f), rely on the correlation
between spatially neighboring pixel estimates in the CRN input (b). However, in regions where such correlations cannot be established by sharing the same
random sequences across pixels, the CRN input exhibits noise patterns similar to those in the PT input (c). Although our method adjusts the control variate
coefficients by accounting for heterogeneous variance in the PT input and achieves lower errors than the other methods, it still produces noticeable residual
noise in areas where spatial correlation is absent.
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