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Fig. 1. Results of our image-space control variate method, which utilizes two image inputs: one generated via path tracing with independent sampling (PT)
and the other via path tracing with common random numbers (CRN), where identical random seeds are assigned to all pixels, unlike in PT. Both input images
are rendered with 96 samples per pixel (spp), and the relative mean squared error (relMSE) is reported to quantify numerical accuracy. Our method reduces the
variance of each pixel estimate by exploiting correlations among spatially nearby pixel estimates in the CRN image, treating them as control variates. Since
the expectations of these variates are unknown, they are approximated using unbiased pixel estimates from the PT image. The control variate coefficients,
which determine their relative contributions, are then optimally adjusted by accounting for heterogeneous errors in the estimated expectations.

We present an image-space control variate technique to improve Monte
Carlo (MC) integration-based rendering. Our method selects spatially nearby
pixel estimates as control variates to exploit spatial coherence among pixel
estimates in a rendered image without requiring analytic modeling of the
control variate functions. Employing control variates is a classical and well-
established technique for variance reduction in MC integration, typically
relying on the assumption that the expectations of control variates are
readily obtainable. When this condition is met, control variate theory offers
a principled framework for optimizing their use by adjusting coefficients that
determine the relative contribution of each control variate. However, our
image-space approach introduces a technical challenge, as the expectations
of the pixel-based control variates are unknown and must be estimated from
additional MC samples, which are unbiased but inherently noisy. In this
paper, we propose a control variate estimator designed to optimally leverage
such imperfect control variates by relaxing the traditional requirement that
their expectations are known. We demonstrate that our approach, which
estimates the optimal coefficients while explicitly accounting for uncertainty
in the expectation estimates, effectively reduces the variance of MC rendering
across various test scenes.
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1 Introduction

Monte Carlo (MC) integration is widely used to numerically ap-
proximate the light transport integral [Kajiya 1986], which cannot
be solved analytically. A key advantage of MC integration is that
its convergence rate is independent of the dimensionality of the
integral, thereby circumventing the curse of dimensionality. Since
simulating global illumination involves high-dimensional integrals
due to multiple light interreflections, MC integration-based render-
ing methods, such as path tracing [Kajiya 1986], have become the
standard approach for generating photorealistic images.

In principle, reducing the approximation error in MC rendering
is straightforward because the variance of the resulting estimates is
reduced by half when the number of samples is doubled. However,
in practice, the number of samples required to produce noise-free
images is often prohibitively large, e.g., more than thousands of
samples per pixel. This limitation motivates the development of
optimization techniques that can effectively reduce MC variance
without relying on exhaustive sampling.

One well-known variance reduction technique is the use of con-
trol variates. The core idea is to introduce an auxiliary function
that closely approximates the light transport integrand in order to
exploit the correlation between them. Although the control variate
function can be freely designed, a common strategy is to choose one
whose integral can be computed efficiently, such as a function with
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an analytically solvable form (e.g., polynomials [Crespo et al. 2021;
Salaiin et al. 2022]). By evaluating both the original integrand and
the control variate function using the same set of random samples,
the control variate estimator can reduce MC variance due to their
correlation.

An alternative strategy is to relax the requirement that control
variates must have tractable integrals, i.e., known expectations. In-
stead, the unknown expectations are replaced with unbiased esti-
mates. This approach offers greater flexibility in selecting control
variate functions and removes the need to model them using sim-
ple analytical forms. A notable example is the image-space scheme
proposed by Rousselle et al. [2016], which demonstrates effective
variance reduction in re-rendering scenarios, such as editing specific
parts of a scene. In this method, pixel estimates from a previously
rendered image serve as control variates for corresponding pixels
in a newly rendered image. This technique can effectively reduce
variance, especially when the pre-rendered image was computed
with more samples than the new one, as estimated expectations can
be less noisy than the current pixel estimates.

In this paper, we adopt this flexible approach that does not rely
on control variates with known expectations, and we present an
image-space control variate framework in which pixel estimates
themselves act as control variates, following the idea introduced by
Rousselle et al. [2016]. However, unlike their method, our approach
is designed for general rendering scenarios where free information,
such as a pre-rendered image, is not available. The main technical
contributions of this work are as follows:

e Regression-based control variate estimator: We introduce
a per-pixel estimator that leverages neighboring pixel es-
timates as control variates using a least-squares regression.
This regression locally adjusts the relative importance of each
control variate based on its correlation with the original MC
estimate.

e Penalized regression for heteroscedasticity: We formulate a
penalized least-squares regression that estimates optimal co-
efficients for the control variates while accounting for hetero-
geneous uncertainty in the estimation of their expectations.

We demonstrate that our control variate framework, which incor-
porates both the varying correlation of control variates with the
original MC estimates and the heterogeneity of estimation errors,
achieves effective variance reduction, as illustrated in Fig. 1.

2 Related Work

Exploiting control variates has been widely adopted to reduce MC
variance, which typically involves devising auxiliary functions, i.e.,
control variate functions. While the functions can be designed arbi-
trarily, a common practice is to select simple forms close to the target
function so that their expectations can be computed analytically or
at low cost, unlike the original function.

Such traditional design choices for control variates have been
adopted for specific MC integrals in rendering, such as ambient
lighting term [Lafortune and Willems 1995b], diffuse-only illumi-
nation (e.g., radiosity) [Szirmay-Kalos et al. 2001], and direct il-
lumination, either under a constant visibility assumption [Szécsi
et al. 2004] or using an approximate visibility field [Clarberg and
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Akenine-Moller 2008]. Lafortune and Willems [1995a] also explored
aradiance approximation based on a five-dimensional tree structure,
which was employed both as a control variate and as an importance
sampling distribution. Spherical harmonics (SH) representations of
environment lighting or BRDFs have also been adopted as control
variates [Belcour et al. 2018; Mehta et al. 2012].

A more sophisticated approach to designing control variate func-
tions, while still satisfying the requirement that their expectations
can be computed easily, is to leverage neural networks [Miiller et al.
2020; Subr 2021]. For example, Miiller et al. [2020] integrated nor-
malizing flows into a neural network that learns control variates
and applied this neural control variate to estimate reflected radiance
at a path vertex, i.e., a surface point intersected by a ray, along with
a neural-network-based path-guiding [Miiller et al. 2019].

The combination of control variates and multiple importance sam-
pling (MIS) [Veach and Guibas 1995] has also been explored [Fan
et al. 2006; Hua et al. 2023; Kondapaneni et al. 2019; Owen and Zhou
2000]. For example, Owen and Zhou [2000] demonstrated that MIS
can be further improved using control variates defined over sam-
pling distribution functions. Fan et al. [2006] applied this enhanced
MIS framework to direct illumination. Additionally, Kondapaneni
et al. [2019] derived optimal MIS weights without non-negativity
constraints and established a theoretical connection between these
weights and control variates. This framework was later extended
into a practical solution for global illumination by Hua et al. [2023].

An alternative direction is to construct control variates using
auxiliary functions of random samples in the primary sample space,
rather than defining them in a local path space (e.g., at a path ver-
tex). Crespo et al. [2021] and Salaiin et al. [2022] demonstrated that
designing such functions using polynomials can reduce MC noise
while taking advantage of the tractable integrals of the polynomials.
Crespo et al. [2021] further improved their control variate estimator
by adaptively constructing the polynomials using a nested quadra-
ture rule, and Salaiin et al. [2022] showed that the control variate
estimator can asymptotically outperform the straightforward MC
estimator, i.e., the sample mean at a pixel, which corresponds to a
constant approximation.

Image-space control variates. A simpler alternative to the afore-
mentioned approaches is to use pixel estimates as control variates,
replacing their expectations with unbiased estimates rather than
explicitly constructing a control variate function with a tractable
integral. Rousselle et al. [2016] adopted this approach and applied
it to two specific rendering scenarios: (1) scene editing, where a
pre-rendered image can be used as input, and (2) gradient-domain
reconstruction, where image gradients computed by a path-shifting
algorithm [Kettunen et al. 2015] are available. This control variate
framework has also been extended into a recursive form for inverse
rendering [Nicolet et al. 2023] and into a residual path integral for
complex re-rendering scenarios, such as moving objects [Xu et al.
2024].

Inspired by prior image-space work [Rousselle et al. 2016], we
introduce a control variate technique that leverages spatially nearby
pixel estimates as control variates. However, our approach is de-
signed for a more general rendering scenario, where we cannot
exploit extra information (e.g., a pre-rendered image) or rely on a



strong correlation between the original pixel estimates and the con-
trol variates, as achieved via sophisticated path-shifting in gradient-
domain rendering.

Instead, our approach constructs a per-pixel control variate esti-
mator using least-squares regression. This formulation allows for
the efficient adjustment of coefficients across multiple control vari-
ates, based on their varying degrees of correlation with the original
MC estimates. We further extend this framework to a penalized
least-squares regression that accounts for heterogeneous variances
in the estimated expectations of the control variates.

Multilevel Monte Carlo. Multilevel Monte Carlo (MLMC) [Giles
2008, 2015], which performs an MC simulation with multiple levels
of approximation, is related to control variate techniques, since a
relatively cheap but coarse approximation serves as a control variate
for a more expensive but accurate approximation [Li and Ware 2024].
In rendering, Keller [2001] introduced an interpolation scheme on
an image hierarchy with different discretization levels. Recently,
Dereviannykh et al. [2025] proposed a two-level MLMC framework
in which radiance caching with a neural network serves as a low-
level (and fast) approximation of path tracing. Unlike these MLMC
techniques, our method does not require computing multiple levels
of approximation with varying costs. Instead, we formulate neigh-
boring pixel estimates as multiple control variates and investigate
their optimal weighting.

3 Theoretical Background and Problem Specification

This section provides a brief theoretical overview of control variates
and describes the target problem to which we apply image-space
control variates. Consider a Monte Carlo (MC) integration that
numerically approximates the integral of a function f over a unit
domain X:

1 &
F= [ F= 03 s, o)

where n is the number of samples, and the integrand f(x) is eval-
uated at independent random samples xs drawn uniformly from
X. This basic estimator, the sample mean f, provides an unbiased
estimate of the true value F, but it often requires a large num-
ber of samples to reduce its approximation error, i.e., the variance
o%(f) = 6®(f(x))/n, to an acceptable level.

To reduce the variance of the MC estimator, let us consider the
case where we have k control variate functions g;, for 1 < i < k,
which may be correlated with the original function f. The MC
integration can then be reformulated using these auxiliary functions

as:
n k k
f= % > (f(xs) -3 ﬁig,-(xs)) + " BiGi
s=1 i=1 i=1

; @)
=f- D BiGi -G,
i=1

where f; is the coefficient assigned to the i-th control variate g;,
and G; = E(g;) is its expectation.

Note that the same random samples x; are used for both the target
function f and control variate functions g; to introduce correlation
between f and g;. Since the strength of this correlation may vary
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across different variates, the coefficients f; should be chosen accord-
ingly. For instance, higher values should be assigned to variates that
are more strongly correlated with the sample mean f.

To this end, we derive the variance o%(F) as a function of the
coefficients f;, assuming that the expectations G; of the control
variates g; are known. Under this assumption, the variance can be
expressed as:

o*(F) =+ (e (F0) + BTVyB— 287V, ®

where Vj is the kX k covariance matrix of the random variables g; (x),
Vg is the k X 1 cross-covariance vector between f(x) and g;(x),
and B = [B1, ... Bx]T. The derivation of this variance expression is
provided in the supplementary material. Differentiating o (F) with
respect to f§ yields:

ac?(F) 1

B n

We can then determine the optimal coefficients f* by setting the
derivative equal to zero, which yields:

B =Yy Vi (5)
This formulation of the optimal coefficients also appears in prior
work [Kondapaneni et al. 2019; Owen 2013]. Although the opti-

mal coefficients have a closed-form solution (Eq. 5), it depends on
unknown quantities (Vg and Vy,) that must be estimated. If this

(2vgﬂ - 2Vfg) . (@)

estimation is performed independently of the processed data, i.e., f
and g, then the control variate estimator (Eq. 2) becomes unbiased,
since E(g;) = G;.

In practice, however, the coefficients are typically estimated from
the data itself, since the bias introduced by the statistical dependency
between the coefficients f; and the data is often negligible compared
to the variance of the MC estimator [Owen 2013].

Once this bias is allowed, it becomes natural to estimate the
unknown covariance terms using their sample covariances, leading
to the following solution:

Br=(— XTX_1 L x7
“\n-1 n—1 y (6)

= (XTX) ' X7y,

where X7 X/(n— 1) and X "y/(n — 1) serve as estimates for the un-
known quantities Vj and Vy,, respectively. In the equation above, X
is an nX k matrix whose s-th row is given by [g1 (xs) — g1, -, g (x5) —
gil. The vector y is defined as y = [f(x1) = f ... f(xn) = f17.

After determining the estimated optimal coefficients ﬁ* using
Eq. 6, we can substitute them into the control variate estimator
(Eq. 2) to obtain improved estimates, rather than relying on the
simple MC estimator (Eq. 1).

Notably, the closed-form solution (Eq. 6) corresponds to the nor-
mal equation of ordinary least squares applied to mean-centered
data, i.e., gi (xs) — g; and f(xs) — f. Since the optimal coefficients can
be estimated directly from the data via this closed-form expression,
this regression approach has been widely adopted to estimate the
optimal coefficients for control variates (e.g., [Fan et al. 2006; Owen
and Zhou 2000; Salaiin et al. 2022]).
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Fig. 2. Results of the image-space control variate techniques, (d) and (e). These techniques select spatially close pixel estimates from the CRN input (b) as
control variates and use the corresponding pixel estimates from the PT input (c) as unbiased estimates of their expectations. The CV (baseline) method (d)
estimates the optimal control variate coefficients while ignoring errors in these expectations, i.e., the variances in the PT image. In contrast, our method (e)
explicitly accounts for such errors when determining the coefficients. This technical distinction allows our approach to achieve lower errors than the baseline
by robustly handling heterogeneous noise in the PT image, such as fireflies. The relMSE values are computed over the full images rather than cropped regions.

Problem specification. We aim to design an image-space control
variate framework grounded in the aforementioned theories related
to control variates. Specifically, we use two input images, CRN and
PT (as shown in Fig. 1), both generated using identical Monte Carlo
rendering settings but with different random number sequences. In
the CRN image, common random numbers are used across all pixels,
while in the PT image, independent random sequences are applied.

Given these inputs, we apply the control variate estimator F
at each pixel as a pixel-wise estimator, where f and g; in Eq. 2
represent the sample mean estimate at the target pixel and the
estimate at its i-th neighboring pixel in the CRN image, respectively.
Because the estimator requires the unknown expectation G; of the
variate g;, we approximate this expectation using the corresponding
pixel value from the PT image. The control variate coefficients are
then computed using the least-squares regression (Eq. 6), and the
estimator F is evaluated using the coefficients to generate the output.
This method can be viewed as a direct image-space adaptation of
classical control variate theory. Throughout this paper, we refer to
this straightforward adaptation as CV (baseline).

Fig. 2(d) shows the results of CV (baseline), which produces re-
duced noise compared to the two input images, CRN and PT. How-
ever, the output still exhibits noticeable residual noise, primarily due
to errors in the expectation estimates, especially from noisy pixels
in the PT image. It is important to note that this baseline relies on
optimal coefficients (Eq. 5) derived under the assumption that the
expectations of the control variates are known. This assumption is
violated in our image-space case since the expectations are replaced
with their unbiased estimates. In the following section, we present
a generalization of this baseline framework.

4 Imperfect Image-Space Control Variates

This section presents our control variate framework (Fig. 3), which
explicitly accounts for uncertainty in the expectations of image-
space control variates.

Given a user-specified number of samples per pixel (spp), de-
noted as 2n, we perform MC rendering twice, each with n samples,
to generate two input images: CRN and PT. Since we work with
imperfect control variates whose expectations are unknown and

ACM Trans. Graph., Vol. 44, No. 6, Article 205. Publication date: December 2025.

gl o 4
= || Coefficient estimation [ [  Control variate
7 (Eq. 10) estimator (Eq. 7)

Control variates T
A
u Variance estimation
,_’ (Eq. 11)
Input (PT) Expectations Oﬁtput

Fig. 3. Overview of our image-space control variates framework. We employ
path tracing to generate two types of inputs: PT, which uses independent
random samples across pixels, and CRN, which uses the same random
sequences across pixels. A control variate estimator F is then applied to
each pixel (indicated by a small cyan square), leveraging neighboring pixel
estimates g; from the CRN image as control variates. Corresponding pixel
estimates &; from the PT image are used in place of the true expectations
of the control variates. We estimate the variances of the estimates &; using
Eq. 11, and compute the estimated optimal coefficients ﬁ* through Eq. 10,
taking into account both the correlation between f and §; and the variances
of the ;. Finally, the control variate estimator (Eq. 7) is evaluated using the
coefficients to produce the final output for each pixel.

must be estimated, we redefine the control variate estimator (Eq. 2)
accordingly:

k
ﬁ:f—Zﬂi(fii—fli), (7)
i=1

where h; represents the estimated pixel value in the PT image, i.e.,
the sample mean k; = 1/n 20, hi(xis) that serves as an estimate
of the unknown expectation G;.

To apply this estimator F to each pixel, we select k neighboring
pixels from the CRN image to define k control variates g; for 1 < i <
k. These neighboring estimates serve as control variates to reduce
the noise in the estimate f at the target pixel in the CRN. Specifically,
we use an 11 X 11 search window centered on the target pixel, and
compute the squared differences || f — g;||? between the estimates
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Fig. 4. Ablation study of our method. We evaluate two strategies for estimating the variances of the estimates h;: (€) using sample variances, and (f) using a
pilot estimator (i.e., a cross-bilateral filter), as defined in Eq. 11. To more clearly assess the accuracy of these error estimation strategies, we also include the
results (g), where we use the ground truth errors of k; in place of the estimated variances 6%(h;) in Eq. 11. These oracle errors are computed as the squared
differences between f; and their corresponding ground truth values in (h). In both cases, (e) and (f), our method outperforms the baseline approach (d),
which does not account for the variance in h;, highlighting the practical importance of incorporating such errors when estimating the optimal control variate
coefficients. Our chosen strategy (f), which estimates these errors via Eq. 11, yields better results than using per-pixel sample variances (e).

within this window and the target value f. We then select the k-
nearest neighbors based on the differences. In our implementation,
we set k = 25 (an analysis of k is provided in Sec. 5).

For brevity, we omit the subscript that denotes the target pixel
index (e.g., in F and f), as the control variate estimator is applied
independently to each pixel.

Given the new estimator (Eq. 7), which employs estimated expec-
tations h;, we derive its variance ¢? (15 ) in a manner analogous to
Eq. 3, while additionally accounting for the variance introduced by
hi. The resulting expression is:

G () = = (PP + BTV~ 287 Vyy + BTVB), (9

where V}, is the k X k covariance matrix of the random variables
hi(x) in the PT image. This formulation introduces an additional
error term, B V;, B, compared to the original variance formulation
(Eq. 3), which assumes that the expectations G; are exact.

Since the h; values in the PT image are independently estimated
across pixels, the corresponding covariance matrix Vj, becomes
a diagonal matrix, where the i-th diagonal element is given by
o2(hi(x)). The derivation of this variance expression is provided in
the supplementary material.

We then compute the derivative of the variance with respect to f,
which is given by (2V4 — 2Vy, + 2V}, B) /n. By setting the derivative
to zero, we obtain a closed-form solution for the optimal coefficients:

B = (Vg + Vi)™ Vg, )
The formulation above clearly indicates that the optimal coeffi-
cients should be adjusted according to the error structure V, in the
unbiased but noisy estimates ;. Since this formulation involves
unknown terms, we estimate the optimal coefficients using the
following expression:

XTy. (10)

-1
sk 1 ~
= XTX+V
b (n—l h) n—-1

Compared to the original formulation in Eq. 6, this revised expres-
sion incorporates an additional diagonal matrix, V}, whose i-th
diagonal element represents the estimated variance 62 (h;(x)).

The resulting closed-form expression is closely related to
Tikhonov regularization, a widely used technique for stabilizing
least-squares problems that are ill-posed or sensitive to noise by
introducing a penalty matrix [Hansen 2010; Tikhonov and Arsenin
1977].

From this perspective, the estimated covariance Vj, serves as a
penalty term that suppresses the magnitude of the i-th coefficient f;
when the corresponding error 6% (h;(x)) is large. This regularization
property offers a principled approach for robustly handling pixel
estimates h;, whose errors may vary significantly across pixels, as
in the case of fireflies (see Fig. 2).

Variance estimation. To compute the estimated optimal coeffi-
cients using Eq. 10, it is necessary to compute the estimated vari-
ances 62 (h;(x)). A straightforward approach is to use the sample
variance, i.e., §2(hi(x)) = 20y (hilxis) - hi)?/(n—1).

Alternatively, a simple denoising method can be used to gener-
ate pilot estimates, providing a more robust means of estimating
the error in h; than direct sample variances. For this purpose, we
apply a cross-bilateral filter [Eisemann and Durand 2004] and es-
timate o (h;(x)) using the squared difference between h; and the
corresponding denoised value:

2
Z thj —hip . (11)

Ljeo,wj 43

&%(hi(x)) = n6*(hi) =n

The weight w; allocated to pixel j within an 11 X 11 denoising win-
dow is set by wj = exp(—||g; — Gill?/62(gi)), where the bandwidth
6%(g;) is the estimated variance of the sample mean g;.

We also found that enforcing a symmetric penalty by setting the
i-th diagonal element of Vh to 0.5 (6'2(h(x)) + &Z(hi(x))), where
6% (h(x)) denotes the estimated variance at the target pixel com-
puted using Eq. 11, can further improve the results compared to
using 62 (h;(x)) alone (see the supplementary material for analysis).

After defining the matrix Vj, either from sample variances or via
cross-bilateral filtering, we compute the estimated optimal coeffi-
cients B* using Eq. 10, and evaluate the final per-pixel output using
the control variate estimator F in Eq. 7.
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As shown in Fig. 4, both approaches that incorporate uncertainty
in the control variates result in a noticeable improvement over
CV (baseline), which does not consider such imperfections. Since
the alternative method using the cross-bilateral filter produces better
results than the sample variance approach, we adopt it for all other
experiments presented in this paper.

Implementation details. Implementing our control variate is
straightforward due to its image-space formulation, which does
not require modifications to existing sampling strategies such as
importance sampling. However, it does require access to individ-
ual samples in the CRN image (e.g., gi(xs)) to compute the terms
XTX and X Ty in Eq. 10. As a result, the computational overhead
of constructing these terms increases with the number of samples
n, which is undesirable in offline rendering scenarios where n is
typically large.

To mitigate this issue, we adopt a practical surrogate by partition-
ing individual samples into a fixed number of groups and using the
sample mean of each group as a proxy sample for computing X T X
and X Ty. These per-pixel group means can be computed without
storing the full set of individual samples. Moreover, the compu-
tational overhead associated with evaluating the control variate
estimator in Eq. 7, using the coefficients from Eq. 10, depends only
on the number of groups rather than on the total number of samples.

We empirically found that using twelve groups offers a good bal-
ance between accuracy and efficiency. For example, the overheads
with 4, 12, and 24 groups were 31.9 ms, 47.7 ms, and 72.2 ms, re-
spectively, when testing the ten scenes in Table 1. Increasing the
group count from 4 to 12 yielded a 16.8% improvement in relMSE,
whereas a further increase from 12 to 24 groups provided only an
additional 2.6% improvement on average. Based on this trade-off,
we adopt twelve groups for all other experiments in the paper.

5 Results and Discussion

This section evaluates the effectiveness of our method in reduc-
ing MC noise compared to other control variate techniques. Our
straightforward image-space adaptation, built upon traditional con-
trol variate theory (described in Sec. 3), is considered a baseline,
referred to as CV (baseline). We performed experiments on ten
scenes from the public repository [Bitterli 2016], as summarized
in Table 1. All tests were conducted on a PC with an AMD Ryzen
Threadripper PRO 5995WX CPU and a single Nvidia GeForce RTX
4090 GPU. The experiments employed the path tracing implementa-
tion in Mitsuba [Jakob 2010], unless stated otherwise. All images
were rendered at a resolution of 1280x720. Numerical accuracy was
measured using the relative mean squared error (relMSE), computed
using reference images rendered with 65K samples per pixel (spp).
Specifically, the reIMSE of an estimated image F with respect to its
reference F is computed as ﬁ Zfil lE; — Fl~||2/(Fi2 +¢€), where N
is the number of pixels, F; is the grayscale value of the pixel color
F;, and € = 0.01.

Comparisons with image-space control variate techniques. We com-
pare three image-space control variate techniques: CV (baseline),
IDUW [Back et al. 2023], and our method, in terms of numerical
accuracy (Table 1), visual quality (Fig. 8). Both CV (baseline) and
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IDUW use the same input (CRN and PT) as our technique. For IDUW,
we used the public implementation provided by the authors.

The computational overheads of CV (baseline), IDUW, and our
method are 47.2 ms, 67.4 ms, and 47.7 ms, respectively. These differ-
ences are negligible when compared to the sampling time, which
ranges from 8.9 s (TEAPOT) to 37.7 s (BATHROOM) across the five
scenes shown in Fig. 8. Therefore, the comparisons correspond to
equal-time evaluations.

Although IDUW was originally introduced as a low-bias denois-
ing technique, we include it in our evaluation because its image-
space formulation can be reinterpreted as a control variate estimator
(see the supplementary material). The key distinction lies in the
computation of the control variate coefficients: IDUW heuristically
determines them using the variances of pixel estimates in the CRN
image, while our method derives and estimates optimal coefficients.

This technical distinction enables our method to produce both
quantitatively and qualitatively superior results, as shown in Table 1
and Fig. 8. Moreover, our improvement over CV (baseline) highlights
the importance of accounting for uncertainty in the estimated ex-
pectations of control variates.

We further evaluate the numerical convergence of all tested
image-space techniques in Fig. 9. Each method estimates its co-
efficients from the processed pixel estimates, which introduces bias.
However, as demonstrated in the convergence plots, this bias does
not diminish the practical benefits of these techniques, as they con-
sistently outperform the standard MC estimator (PT without control
variates) up to high sample counts (for example, 1536 spp).

The convergence results further demonstrate the practical signif-
icance of accounting for uncertainty in the estimated expectations
of control variates. While the performance gap between CV (base-
line) and our method narrows with increasing sample counts in the
Housk, STAIRCASE, and TEAPOT scenes, our method consistently
maintains a significant advantage in all other scenes where MC
noise, as reflected in the errors of the PT estimates, remains rela-
tively high, even at 1536 spp.

Comparisons with control variates using tractable expectations.
Fig. 10 compares with the control variate method proposed
in [Salaiin et al. 2022], which uses polynomial functions in the
primary sample space. We refer to this method as CV (polynomi-
als). For testing CV (polynomials), we used the publicly available
code provided by the authors, which was implemented on top of the
PBRT [Pharr et al. 2016] framework. To ensure a fair comparison, we
also used the same framework (PBRT) when evaluating our method.

CV (polynomials) enables analytical computation of the expec-
tations of control variates, effectively eliminating expectation er-
rors. However, it requires the dimensionality of the analytic func-
tion to be fixed and relatively low. This contrasts with image-
space methods, including ours, which can accommodate arbitrarily
high-dimensional scenarios resulting from multiple secondary ray
bounces in path tracing. As a result, a direct comparison with CV
(polynomials) is not meaningful for the general experiments shown
in Table 1 and Figs. 8 and 9.

To allow for a fair comparison, we selected two scenes from
Table 1, HousEe and TEaPoT, which are primarily lit by direct il-
lumination from environmental lights. We further restricted the
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Table 1. reMSE comparisons with IDUW [Back et al. 2023] and CV (baseline) across different sample counts for ten tested scenes.

BAaTHROOM BREAKFAST Room CLASSROOM Door GLASS OF WATER
spp || IDUW Baseline Ours IDUW Baseline Ours IDUW Baseline Ours IDUW Baseline Ours IDUW Baseline Ours
48 || 0.0257 0.0535 0.0087  0.0208 0.0306 0.0061 0.0650 0.1226 0.0200  0.1518 0.2296 0.0705 0.0951 0.1583 0.0478
96 || 0.0150 0.0290 0.0056  0.0158 0.0206 0.0036  0.0421 0.0688 0.0143  0.1039 0.1673 0.0363  0.0692 0.0955 0.0394
192 || 0.0088 0.0148 0.0037  0.0086 0.0108 0.0024 0.0230 0.0330 0.0094 0.0589 0.1047 0.0202  0.0529 0.0611 0.0301
384 (| 0.0056 0.0081 0.0025 0.0046 0.0046 0.0014 0.0136 0.0156 0.0063  0.0344 0.0600 0.0117 0.0362 0.0373 0.0201
GREY & WHITE Room House KiTCHEN STAIRCASE TeEaPOT
spp || IDUW Baseline Ours IDUW Baseline Ours IDUW Baseline Ours IDUW Baseline Ours IDUW Baseline Ours
48 || 0.1270  0.0930 0.0358  0.0085 0.0059 0.0032  0.0456 0.0396 0.0152 0.0084 0.0073 0.0041  0.0065 0.0054 0.0020
96 || 0.0688 0.0564 0.0211  0.0036 0.0030 0.0015 0.0299 0.0244 0.0083  0.0050 0.0037 0.0024 0.0034 0.0027 0.0012
192 || 0.0364 0.0313 0.0127  0.0023 0.0015 0.0009 0.0156 0.0132 0.0047  0.0028 0.0019 0.0015 0.0015 0.0013 0.0006
384/ 0.0186 0.0165 0.0073  0.0012 0.0007 0.0005 0.0085 0.0071 0.0029  0.0015 0.0010 0.0008 0.0009 0.0006 0.0003

i ‘GLAS i I

reIMSE / Squared bias

[ aiint
S

0.0259/0.006719

Squared bias

/4

£

relMSE / Squared bias

0.0008 / 0.000042

0.0009 / 0.000005

(a) OIDN, 192 spp (b) Ours, 192 spp (c) Reference, 65K spp

Fig. 5. Comparison with a neural denoiser, OIDN [Afra 2025]. While our
technique produces noisier results and higher relMSEs than OIDN, it
achieves a substantially lower squared bias compared to the denoiser. To
compute the bias, we used 300 input images generated with different ran-

dom seeds per scene for both our method and OIDN.

maximum ray depth to exclude indirect illumination, ensuring that
MC noise originates mainly from direct lighting. The corresponding
reference images were also re-rendered under this restricted setting
for consistency. The computational overhead of this method was
approximately 1100 ms, which is higher than the 47.7 ms required
by our method under the same conditions shown in Fig. 10. Since the
provided code is CPU-based, unlike our GPU-based implementation,
we ensured fairness by conducting same-sample comparisons.

As shown in Fig. 10, polynomial approximations of the light
transport integral, such as the tested direct lighting integral, out-
perform the standard MC estimator (PT). Nevertheless, our method
achieves more effective noise reduction by leveraging spatial cor-
relations across pixel estimates, in contrast to CV (polynomials),
which processes each pixel independently without incorporating
information from neighboring pixels. More importantly, our method
offers greater generality, as it does not impose any constraints on
the dimensionality of the integrand.

Comparisons with image denoisers. Our method shares high-level
similarities with denoising methods, as both leverage spatial co-
herence in image space, i.e., the similarity of ground-truth colors
among spatially close pixels. However, unlike denoisers, whose bias
increases when blending pixels with different ground-truth colors,
our bias arises solely from the statistical dependency between con-
trol variate coefficients and the input data. This technical distinction
can lead our technique to yield lower bias than image denoisers.

To analyze this difference, we compare our method with a recent
neural denoiser, Intel’s Open Image Denoise (OIDN) [Afra 2025],
using its publicly released pre-trained neural network. For OIDN, we
generated and provided PT images (excluding CRN images), along
with G-buffers, as input to the OIDN network.

When testing the ten scenes using 192 spp in Table 1, we observed
that OIDN achieved 2.27X lower relMSE than our method on aver-
age, whereas our squared bias was 15.25X lower. We also include
qualitative comparisons for the GLass oF WATER and HOUSE scenes
in Fig. 5, where the strengths and weaknesses of each method are
evident: OIDN produces smoother but more biased results, while
our technique yields noisier but less biased results.

Analysis of the number of control variates. We utilize k-nearest
pixel estimates selected from a search window centered at each
pixel. In our tests, we set k = 25 using an 11 X 11 search window.
Fig. 11 presents our results where we vary k values, ranging from 6
to 100. For higher values of k (specifically, 50 and 100), we increased
the search window size to 21 X 21.

The changes in the accuracy of our control variate technique
remain moderate compared to the overall noise reduction achieved
over the input (e.g., CRN). This is because the relative influence of
each control variate is adaptively balanced through the estimated
optimal coeflicients ﬁ* (Eq. 10). Nonetheless, accuracy generally
improves with increasing k up to an intermediate value (k = 25)
without significantly affecting computational overhead. Therefore,
we chose k = 25 and used this setting for all other experiments.
We provide additional analyses (e.g., using alternative strategies for
selecting the k-nearest neighbors) in the supplementary material.

Analysis of the difference in sample rates between CRN and PT
images. By default, we use the same sample count for both input
images, CRN and PT. In Fig. 6, we vary the sample allocation between
the two images and present the results from each configuration.

ACM Trans. Graph., Vol. 44, No. 6, Article 205. Publication date: December 2025.
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We observe a trade-off between correlated noise inherited from
CRN and independent noise introduced by PT. For example, when
allocating more samples to PT (Fig. 6(b)), the results exhibit less
independent noise but more correlated noise, compared to the case
of allocating more samples to CRN (Fig. 6(d)). While the optimal
sample allocation between the two inputs depends on the scene,
we find that our default choice of equal allocation (1:1) provides a
reasonable balance in practice.

Limitations and future work. The effectiveness of control variate
estimators depends on the degree of correlation between the original
MC estimates and the selected control variates. Consequently, our
method may fail to reduce noise effectively when neighboring pixels
in the CRN image exhibit weak correlation, such as in regions with
random noise patterns (e.g., in Fig. 12). In these scenarios, our error
estimation (Eq. 11) can also become inaccurate, as it relies on a
cross-bilateral filter whose weights w; are determined by differences
in CRN estimates (e.g., §j — gi). We found that this can result in
energy loss in regions where the estimates are particularly noisy.
Although this issue diminishes at higher sample counts because our
control variate technique is a consistent estimator, improving error
estimation accuracy through enhanced weighting could further
increase robustness. We leave this exploration for future work.

An additional limitation stems from the image-space nature of our
approach. By leveraging spatial correlation, our method inherently
introduces statistical dependencies among output pixel estimates,
resulting in correlated noise. This violates a common assumption
in image denoising techniques [Zwicker et al. 2015], which typi-
cally treat pixel estimates as statistically independent. Therefore,
applying a denoiser designed under this assumption to our output
is not ideal (see Fig. 7). A promising direction for future work is
to design a method-specific denoiser that explicitly accounts for
the correlated errors produced by our method, similar to the recent
denoiser proposed in [Chen et al. 2024] for handling correlated noise
generated by Metropolis light transport [Veach and Guibas 1997].
Furthermore, since our method enables the estimation of per-pixel
errors via Eq. 8, another potential extension is to incorporate an
image-space adaptive sampling strategy [Zwicker et al. 2015] to ef-
fectively reduce the errors in f;. Finally, it would also be interesting
to explore combining our technique with path-reusing frameworks
that exploit image-space correlation through correlated sampling,
such as gradient-domain rendering [Kettunen et al. 2015; Lehtinen
et al. 2013] and image-space splatting [Tong and Hachisuka 2024].

6 Conclusion

This paper introduces a new per-pixel estimator that operates in
image space and does not require modifications to existing sampling
optimizations, such as importance sampling. Specifically, neighbor-
ing pixel estimates from a correlated input (CRN) are selected as
control variates without explicitly modeling their analytic forms,
and their expectations are estimated using corresponding pixel val-
ues from an independent input (PT). While this design keeps our
method simple and broadly applicable to general rendering sce-
narios, it introduces a key challenge: the control variates can be
unreliable since their estimated expectations are as noisy as the vari-
ates. To address this issue, we propose a strategy based on penalized

ACM Trans. Graph., Vol. 44, No. 6, Article 205. Publication date: December 2025.

'u

0 0034 00037 0.0051 relMSE

BREAKFAST ROOM 0.0027 0.0024 0.0029 relMSE

(a) Reference (b) Ours (c) Ours (d) Ours (e) Reference
48:144 spp 96:96 spp 144:48 spp 65K spp

Fig. 6. Results with different sample allocations between the two input
images (CRN and PT). Given a user-specified total sample count (196 spp),
we divide it between the inputs as follows: (b) 48:144, (c) 96:96, and (d) 144:48
for CRN:PT, respectively.

GREY & WHITE RooM 0.0127 0.0066 relMSE
(a) Reference (b) Ours (c) OIDN+Ours  (d) Reference
192 spp 192 spp 65K spp

Fig. 7. Image denoising results on our output. We apply a recent denoiser,
OIDN [Afra 2025], to our output (b). While the denoised images (c) show
reduced errors from the suppression of independent noise, another type of
noise (i.e., correlated noise) remains.

least-squares regression that accounts for the heterogeneous vari-
ances in the estimated expectations. This approach enables robust
exploitation of multiple imperfect control variates.
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reIMSE

TEAPOT 0.0111 0.0113 0.0015 0.0013 0.0006 relMSE
(a) Reference (b) Input (CRN), 96 spp (c) Input (PT), 96 spp (d) IDUW, 192 spp (e) CV (baseline), 192 spp  (f) Ours, 192 spp (g) Reference, 65K spp

Fig. 8. We compare our method with two image-space control variate techniques: IDUW [Back et al. 2023] and CV (baseline). All methods use the same input
images, as shown in (b) and (c), but differ in how they compute the control variate coefficients. IDUW (d) sets the coefficients based on the variances of pixel
estimates in the CRN image, while CV (baseline) (e) employs least-squares regression but ignores the errors in the estimated expectations, i.e., the noise of
pixel estimates in the PT input. In contrast, our method (f) derives and estimates optimal control variate coefficients by explicitly accounting for these errors.
This distinction enables our approach to achieve more accurate and effective variance reduction.

BAHTROOM BREAKFAST Room CLASSROOM Door GLASS OF WATER
e pT 101 —— PT — pT e pT e pT
10-1 —=— IDUW —=— IDUW —=— IDUW —=— IDUW —=— IDUW
—+— Baseline —+— Baseline 10-1 —+— Baseline —+— Baseline —+— Baseline
Ours —+— Ours Ours —+— QOurs —+— Qurs
[Sa) 10-1
‘g 1072 107!
= 1072
= 10-2
1072
1072
24 48 96 192 384 768 1536 24 48 96 192 384 768 1536 24 48 96 192 384 768 1536 24 48 96 192 384 768 1536 24 48 96 192 384 768 1536
GREY & WHITE Room House KITCHEN STAIRCASE TeAPOT
— PT —— PT —— PT e pT e pT
—=— IDUW 1072 —=— IDUW 10! —=— IDUW —=— IDUW —=— IDUW
10-1 —— Baseline —+— Baseline —*— Baseline 10-2 —— Baseline 1072 —— Baseline
o Ours Ours —+— Ours Ours —+— Ours
=
_ -2
T,j 10-3 10 10-3
-2
10 1073
24 48 96 192 384 768 1536 24 48 96 192 384 768 1536 24 48 96 192 384 768 1536 24 48 96 192 384 768 1536 24 48 96 192 384 768 1536
Samples per pixel (spp) Samples per pixel (spp) Samples per pixel (spp) Samples per pixel (spp) Samples per pixel (spp)

Fig. 9. Numerical convergence of IDUW, CV (baseline), and our method, plotted on a log-log scale. The convergence of the standard MC approach (PT) is
also shown. All control variate techniques introduce bias because their coefficients are estimated from processed data (i.e., pixel estimates). Nevertheless,
these bias errors can be acceptable in practice, as the methods consistently yield lower errors than PT. Moreover, the results demonstrate that accounting for
imperfections in control variates remains important even at high sample counts (e.g., 1536), particularly in scenes with relatively high MC variance.
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i | P O R 1 PO

HOUSE 0.0044 0.0033 0.0013 relMSE

-

TEAPOT 0.0059 0.0045 0.0005 relMSE
(a) Reference (b) PT, 192 spp (¢) CV (polynomials), 192 spp (d) Ours, 192 spp (e) Reference, 65K spp

Fig. 10. Comparison with CV (polynomials) [Salaiin et al. 2022], which constructs high-dimensional polynomials in the primary sample space and applies
them as control variates independently at each pixel. This approach (c) is effective when the dimensionality of the light transport integrand is low, in contrast
to our image-space method. To ensure a fair comparison, we reduce the dimensionality by disabling indirect illumination in the two tested scenes. Unlike
CV (polynomials), our method (d) leverages spatial correlations across pixels rather than treating each pixel estimate in isolation. This distinction allows our
technique to achieve more effective variance reduction without relying on control variate functions with tractable integrals.

GLASS OF WATER 0.2035 0.0435 0.0367 0.0301 0.0351 0.0449 reIMSE

(a) Reference (b) Input (CRN) ()k=6 (d) k=12 (e) k=25 (f) k=50 (g) k=100 (h) Reference
96 spp (14.1 ms) (20.5 ms) (47.7 ms) (288.4 ms) (1316.8 ms) 65K spp

Fig. 11. Analysis of our method with varying numbers of control variates. We vary the number of control variates, k, from 6 (c) to 100 (g), and report both the
corresponding errors and computational overhead. The results indicate that varying k does not significantly impact the final accuracy of our method relative
to the improvements achieved over the input (b). It is also observed that increasing k tends to improve overall accuracy up to k = 25 without introducing a
substantial increase in computational cost. Based on this analysis, we adopt k = 25 as the default setting for all other experiments.

GREY & WHITE Room 0.0975 0.1074 0.0364 0.0313 0.0127 relMSE
(a) Reference (b) Input (CRN), 96 spp (c) Input (PT), 96 spp (d) IDUW, 192 spp (e) CV (baseline), 192 spp  (f) Ours, 192 spp (g) Reference, 65K spp

Fig. 12. Failure cases of image-space control variate techniques. All tested methods, including IDUW (d), CV (baseline) (e), and ours (f), rely on the correlation
between spatially neighboring pixel estimates in the CRN input (b). However, in regions where such correlations cannot be established by sharing the same
random sequences across pixels, the CRN input exhibits noise patterns similar to those in the PT input (c). Although our method adjusts the control variate
coefficients by accounting for heterogeneous variance in the PT input and achieves lower errors than the other methods, it still produces noticeable residual
noise in areas where spatial correlation is absent.
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