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Table 1. Relative MSEs of our inference under different values of « (in Eq. 8
of the paper) and various Adam learning rates. The number of samples used
was two for the TRAY scene and eight for the PLANE and FRAME scenes.

. . Ours
Scene | Unbiased Biased 2200 2207 208 209
learning rate = 0.04
TrAY 0.00800 0.00623  0.00445 0.00446  0.00444 0.00435
PLANE 0.02823 0.01313  0.01296  0.01112 0.01068  0.00943
FrRAME 0.01906 0.00332  0.00925  0.00400  0.00328  0.00262
learning rate = 0.02
TrAY 0.03985 0.00713  0.00433 0.00430  0.00432 0.00437
PLANE 0.01256 0.01301  0.00896  0.00709  0.00661  0.00592
FrRAME 0.01038 0.00300 0.00367  0.00211 0.00190  0.00172
learning rate = 0.01
TrAY 0.12691 0.00941 0.00666 0.00648  0.00657 0.00686
PLANE 0.01137 0.01426  0.00726 ~ 0.00556  0.00534  0.00507
FrRAME 0.00992 0.00354 0.00191  0.00157 0.00155 0.00157

1 Analysis of our method under different learning rates

We use a consistent learning rate of 0.02 for Adam in all BSDF
optimization experiments presented in the main paper. In this sec-
tion, we analyze how the inference accuracy varies when different
learning rates are used.
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Fig. 1. Relative MSE convergence of scene inference using different gradients
(unbiased [Vicini et al. 2021], biased [Chang et al. 2024], and ours) under
two learning rates (0.01 and 0.02). We used eight samples for the PLANE and
FRAME scenes.

Analysis of a across different learning rates. Table 1 reports the
BSDF inference errors for varying values of « (in Eq. 8 of the paper)
and learning rates. The parameter a controls the degree of temporal
aggregation of unbiased derivatives in our error estimation (see
Sec. 4.2 of the paper). A higher value of « places more weight on
temporally accumulated unbiased derivatives, which makes the
error estimation less sensitive to noise in the derivatives.

As shown in Table 1, the optimal value of o that minimizes infer-
ence error depends on both the Adam learning rate and the specific
scene. However, the variation in error across different « remains
moderate, except when a = 0, which leads to the noisiest error esti-
mates. Based on this observation, we choose a = 0.9, as it produces
better results than the tested other values in most cases.

Comparison of scene optimization convergence under different learn-
ing rates. Fig. 1 shows the relative MSEs of BSDF optimization re-
sults obtained using different gradient types under two learning
rates of the Adam optimizer. With a relatively high learning rate
(0.02), the three tested methods converge quickly to local minima
compared to when a lower learning rate (0.01) is used. However, a
lower learning rate can be more desirable when a long optimization
time (i.e., more iterations) is feasible, as it may continue to reduce
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Table 2. Relative MSEs of scene inference results for the TRAY scene using 2
and 32 samples per pixel (spp) with different learning rates.

spp [ Learning rate [ Unbiased  Biased Ours

0.01 0.12691 0.00941  0.00686
2 0.02 0.03985 0.00713  0.00437
0.04 0.00800 0.00623  0.00435
0.01 0.00217 0.00883  0.00180
32 0.02 0.00211 0.00568  0.00173
0.04 0.00248 0.00408  0.00209

Table 3. Relative MSEs of our BSDF optimization results using different
window sizes.

Ours
5%5 7 X7 9%x9
0.00713 0.00381 0.00437  0.00482

0.01301  0.00680  0.00592 0.00551
0.00300  0.00204 0.00172  0.00165

Scene | Unbiased Biased

Tray 0.03985
PLANE 0.01256
FrRAME 0.01038

the error over time, unlike the high learning rate. While the choice
of learning rate influences convergence behavior, our method con-
sistently achieves better optimization performance than using either
unbiased or biased gradients alone for the tested cases.

Analysis of our results with different learning rates and sample
counts. Table 2 presents the numerical accuracy of our BSDF opti-
mization results using different Adam learning rates, tested with
2 and 32 samples per pixel (spp), respectively. We used 100 opti-
mization iterations for the TrAY scene. The results show that the
optimal learning rate depends on the sample count. For instance, a
higher learning rate (0.04) yields the lowest error when using 2 spp,
whereas a moderate rate (0.02) performs best with 32 spp. While the
choice of learning rate affects the optimization outcomes across all
tested methods, including ours, combining unbiased and biased gra-
dients consistently achieves lower errors than using either gradient
type alone.

2 Analysis of the James-Stein gradient combiner with
different window sizes

In the James-Stein gradient combiner, we use a 7 X 7 window for 2D
parameters (e.g., textured BSDFs) to define the spatial neighborhood
around each parameter index ¢ in parameter space (see Sec. 4.1 of the
main paper). To assess the impact of window size on our inference
performance, we report our errors using three different window
configurations (5 X 5, 7 X 7, and 9 X 9) in Table 3. While varying
the window size influences our inference results, the changes in
error are relatively minor compared to the error reduction of our
method over the alternatives that rely solely on unbiased or biased
gradients.

3 Comparison with variants of the cross-bilateral filter

In the main paper, we use the cross-bilateral filter to generate a bi-
ased gradient by denoising unbiased gradients while relying on the
original Adam optimizer. As presented in the original paper [Chang
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Table 4. Relative MSEs of the optimization results using different configu-
rations of the cross-bilateral filter [Chang et al. 2024]. We evaluate three
variants: pre-filtering (pre), which denoises the unbiased gradients; post-
filtering (post), which filters the moment estimates in Adam; and a combined
version (both), which applies both pre- and post-filtering.

Scene Unbiased | Biased Biased Biased Ours Ours
(pre) (post) (both) (pre) (both)
TrAY 0.03985 0.00713  0.01018 0.00656 | 0.00437  0.00442
PLANE 0.01256 0.01301  0.00906 0.01346 | 0.00592 0.00524
FraAME 0.01038 0.00300 0.00254 0.00312 | 0.00172  0.00155

et al. 2024], an alternative approach is to apply the cross-bilateral fil-
ter to denoise the moment estimates of Adam (post-filtering) rather
than denoising unbiased gradients (pre-filtering). Additionally, both
pre-filtering and post-filtering can be applied together.

For the post-filtering variant, we employ a smaller filtering win-
dow than pre-filtering, as the moment estimates (i.e., inputs to post-
filtering) are generally less noisy than unbiased gradients (inputs
to pre-filtering). Specifically, we reduce the number of iterations of
the A-trous cross-bilateral filter [Chang et al. 2024].

As shown in Table 4, the three filtering variants produce compa-
rable errors. For instance, post-filtering yields the lowest errors for
the PLANE and FRAME scenes but performs worse on the TRAY scene
compared to the other two configurations.

Moreover, it is worth exploring the integration of post-filtered
Adam into our method. Since our approach only modifies the input
to the optimizer, the original Adam can be easily replaced with its
post-filtered variant. The final column in Table 4 reports results
from this configuration, which exploits pre-filtering to generate
our biased input and passes our combined gradients to post-filtered
Adam. While this setup results in a slightly higher error than our
chosen configuration using the original Adam on the TRAY scene, it
achieves lower errors on the PLANE and FRAME scenes.
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