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ABSTRACT Projection mapping is a widely adopted technique in various applications. A typi-
cally projector-camera system consists of a projector and camera pair where a projector emits an
application-specific input image onto a surface, and the camera captures the projected output image. Given
an ideal projection surface with white-colored planar geometries, the camera (or a viewer) can observe the
projected output image without any visual distortion. The surface, however, can have arbitrary shapes and
textured colors in practice, and it often introduces visually distracting artifacts to the output image. It results in
lowering the viewing experience drastically.We propose a projector compensation framework that adjusts the
projector input image so that the camera can see the projected output image with a much-reduced distortion.
Our key contribution is to model the real projection mapping process with a virtual but controllable light
simulation and optimize the projector input using differentiable rendering. We demonstrate that our new
framework produces a more accurate output than state-of-the-art methods given complex projection surfaces.

INDEX TERMS Projector compensation, geometric calibration, photometric compensation, differentiable
rendering.

I. INTRODUCTION
Projection mapping has been widely used in various appli-
cations such as medical applications [4], [8], [29], exhibi-
tion [21], [31], and spatial augmented reality [25], [30], [34].
A conventional (but ideal) scenario for such projection map-
ping is that a projector projects a target image onto a flat sur-
face (screen) with white color, and in this setting, a viewer can
observe the projected image without any geometric and pho-
tometric distortion. However, in practice, a projection surface
often has arbitrary geometries or textured colors (e.g., not just
a flat wall with white color). It often drastically lowers the
viewing experience on projected images since a target image
that we want to show on a projection surface can be distorted
geometrically and photometrically.

Projector compensation tackles the challenge, introduced
by a non-ideal projection surface, by adjusting the input
image projected on the surface so that a viewer (or a cam-
era) can see a target image without distortion. To this end,
we should solve two major technical problems: geometric
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calibration and photometric compensation. In the geometric
calibration, the shape of a projector input image should be
amended (i.e., a warped image) by taking geometries of a pro-
jection surface into account. On the other hand, photometric
compensation is a process that adjusts the color in the warped
image so that the projected image on a projection surface can
be seen from a viewer without color distortion.

A classical but common approach is to design hand-crafted
mapping functions for the geometric calibration (e.g., [15],
[22], [35]) or photometric compensation process (e.g., [9],
[10], [23]) between a projector input and observed output
image (e.g., a projected output captured by a camera). How-
ever, it can be technically challenging to accurately model a
complex light interaction between the light (i.e., a projector)
and a projection surface with arbitrary geometries and colors.

A recent alternative to the classical approaches is to employ
a deep neural network that infers the optimal projector input
image to match an output projection image with a target
image [12], [16]. While the state-of-the-art learning-based
methods demonstrated outstanding results compared to clas-
sical models by taking both geometric and photometric cor-
rection into account, their visual artifacts (i.e., a discrepancy
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between the result and target image) can still become signif-
icant, especially when the geometries of a projection surface
become complex, as shown in an example figure (Fig. 1).
We propose a novel projector compensation framework

that seeks an optimal projector input to make the projected
output similar to a target image for a typical projection map-
ping system with a projector-camera pair. Our key idea is
to model a projection mapping process with a virtual but
controllable rendering process and estimate the optimal input
image using differentiable rendering. It allows us to optimize
the projector input image by gradient descent while minimiz-
ing the difference between a target image and an observed
output image without relying on a deep neural network.
The technical contributions of our paper are summarized as
follows.
• We simulate a projection mapping process in a virtual
space so that a light transport algorithm can mimic the
real projection mapping process. Technically, it allows
us to explicitly model a functional relationship between
a projector input and a projected output image as a
rendering process.

• We formulate an optimization problem with a rendering
function to estimate the optimal projector input and
solve the problem using a multi-stage optimization pro-
cess that utilizes differentiable rendering.

We demonstrate that our projection mapping framework
using differentiable rendering can reproduce a target image
more accurately than the state-of-the-art method, espe-
cially when a projection surface is non-planer or colored
(e.g., Fig. 1).

II. RELATED WORK
This section discusses existing methods that solve either geo-
metric calibration or photometric compensation and explains
comprehensive methods that solve both problems together
like our method.

A. GEOMETRIC CALIBRATION
As a seminal work, Zhang [37] proposed a camera cal-
ibration method that can estimate intrinsic and extrinsic
parameters of a camera by taking a few photos on a planar
surface with a regular pattern. This initial work inspired
geometric calibrationmethods for a projector-camera system.
For example, Moreno and Taubin [22] presented a cali-
bration procedure for structured-light systems, which esti-
mates the correspondences between a projector input image
and a camera-captured image using a checkerboard pattern.
Yang et al. [35] used randomly distributed circular patterns
instead of a checkerboard pattern for calibrating a projector-
camera system. Recently, Huang et al. [15] addressed the
imperfect planarity of the board used for calibration using a
bundle adjustment algorithm.

B. PHOTOMETRIC COMPENSATION
Nayar et al. [23] is an early work that handled pho-
tometric compensation so that a non-ideal projection

FIGURE 1. Projection mapping results of the state-of-the-art
(CompenNet++) [12] and our method (ours) given a non-planar and
colored projection surface. The blue-colored box (in (a)) denotes the
target display area where we want to show the target (ground truth)
image (d) on the surface. Both methods estimate optimal projector input
images ((b) and (c)) for this projection mapping task by adjusting its
shape and colors. Our framework optimizes the input image using
differentiable rendering and produces a more accurate output image
(f) than the state-of-the-art result (e).

surface (e.g., a flat but textured surface) could be utilized
as a projector display given a projector-camera system.
Grossberg et al. [9] improved the initial work and pre-
sented a memory-efficient compensation framework. Also,
Grundhöfer and Iwai [10] presented a non-linear color map-
ping between a projector input and camera-captured image
using thin-plate spline (TPS) [6], [7].

It can be beneficial to directly model light interactions
between surfaces for more accurate photometric compensa-
tion, especially given a non-planar projection surface. For
example, Bimber et al. [1], Wetzstein and Bimber [33] and
Sheng et al. [27] formulated the photometric compensation as
an inverse light transport problem and estimated an optimal
projector input that makes a projected output image similar
to a target image. As a recent example, Huang and Ling [13]
proposed an end-to-end neural network (CompenNet) that
learns an optimal color mapping for the compensation.

C. GEOMETRIC AND PHOTOMETRIC CORRECTION
Raskar et al. [26] proposed a pioneer work that models a
projection mapping with a rendering process and projects
intensity-adjusted input images onto a real object while esti-
mating the relative distances between projectors and the
object. Illuminating a real object using multiple projec-
tors was further studied, e.g., multi-projection mapping for
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FIGURE 2. Our projector-camera system consisting of a projector and
RGBD camera. Our framework estimates an optimal projector input so
that a projected output image in the target display area is matched to a
target image.

moving objects [19] and real-time mapping framework sup-
porting multiple projectors [28].

Designing an end-to-end neural network for projector com-
pensation was recently investigated. Huang and Ling [12]
proposed a unified framework (CompenNet++) that han-
dles both geometric and color correction by joining a newly
designed submodule (WarpingNet) for geometric calibra-
tion into CompenNet [13] for photometric correction. Later,
Huang et al. [16] optimized the CompenNet++ and pre-
sented a refined deep neural network (CompenNeSt++) with
a reduced number of learnable parameters. Also, Huang and
Ling [14] presented a sophisticated neural network that mod-
els light interactions with a projection surface and addressed
image-based relighting, photometric correction, and estima-
tion for depth and normal estimation simultaneously.

Our framework solves the geometric calibration and pho-
tometric compensation for a projector-camera system like the
recent learning-based methods. However, the key difference
of the proposed framework is that we employ a full light
transport algorithm, path tracing [18], to model light inter-
actions with a projection surface more accurately and esti-
mate mapping functions for the calibrations via differentiable
rendering. Our modeling of a projection mapping process
with a differentiable rendering framework enables us to seek
an optimal projector input close to a target image without
training a deep neural network using a dataset, unlike the
recent learning-based methods.

III. PROBLEM SPECIFICATION AND MOTIVATION
We configure a projector-camera system (Fig. 2) that consists
of a projector and RGBD camera. We assume the projector
and camera are static and located in front of a projection
surface. We do not assume that the projection surface has a
flat and white wall and will verify our projector compensation
by varying the geometries and colors of the surface.

Let us formulate that the projected image y is generated by
a projection mapping function f that takes a projector input
image x and scene parameters �:

y = f (x, �). (1)

The parameters� includes all physical parameters that can
affect the output image y. Examples are locations and orienta-
tions of the camera and projector and other information such
as geometries and colors of a projection surface.

Our projector compensation problem is to find an optimal
input image x∗ that minimizes the squared difference between
the observed image y and a target (ground truth) image yt :

x∗ = argmin
x

∥∥yt − f (x, �)∥∥2 . (2)

A. TECHNICAL CHALLENGES AND OUR MOTIVATION
The major technical challenge in estimating the optimal pro-
jector input is to model the unknown light transport function f
with an approximate but controllable (differentiable) function
so that the optimal input can be estimated using the approx-
imate function. For such approximation, existing approaches
exploited simple hand-crafted functions such as matrix mul-
tiplication [3], [9], [23], [33], [36] and TPS [10], [11]. Also,
the recent learning-based techniques [12], [16] approximate
the unknown with a deep neural network. Nevertheless, their
approximation quality can be degraded, as their approxima-
tion functions did not consider a complete light transport
process. For example, the projected image can largely deviate
from the target image when a complex projection surface is
given, as shown in Fig. 1. Our main idea for tackling this chal-
lenge is to replace the unknown function with a light transport
simulation, which can mimic the real light propagation in a
virtual world. Note that a general light transport algorithm
(e.g., path tracing [18]) can simulate the unknown function
by taking multiple light bounces (i.e., global illumination)
into account. Also, the light transport simulation can be
differentiated with respect to its input parameters (e.g., virtual
scenes and lights) thanks to differentiable rendering frame-
works (e.g., Mitsuba renderer [24]). It enables us to consider
arbitrary projection surfaces and estimate the optimal projec-
tor input more accurately.

IV. PROJECTOR COMPENSATION USING
DIFFERENTIABLE RENDERING
Our projector compensation framework aims to infer an opti-
mal projector input x∗ that results in a projected image y
(captured by a camera) close to a target image yt . Our key
idea for the compensation task is to model the unknown
projector mapping function f (x, �) (Eq. 1) by a rendering
function f̂ (z, �̂):

f (x, �) = f̂ (z, �̂)− θ, (3)

where �̂ is virtual scene parameters fed into the rendering
function f̂ (·) and θ is a bias image that compensates for the
approximation error, i.e., f̂ (·)− f (·). Table 1 summarizes the
main notations used in the paper.
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FIGURE 3. Our estimation framework for projector compensation. We
approximate a projection mapping in the real space with a virtual
rendering process and seek an optimal projector input x∗. Our estimation
consists of the three main stages: estimation of scene parameters
(Sec. IV-A), image warping function (Sec. IV-B), and optimal projector
input (Sec. IV-C).

We also model the relation between the real projector input
x and a virtual projector input z as

x =W(z), (4)

where W is an image warping function that compensates a
geometric discrepancy between two projected images from
the real and virtual space.

For the virtual scene parameters �̂, we only consider a
subset of all potential scene parameters � since in prac-
tice it is not possible to model all physical parameters.
Precisely, we define the virtual parameters as a set �̂ =
{Co, Cd ,Po,Pd ,Sg,Sc} that includes the following:
• The position and direction of the camera (Co and Cd ),
• The position and direction of the projector (Po and Pd ),
• The geometries and colors of the projection surface
(Sg and Sc).

Given the functional relationship (Eq. 3) with the defi-
nitions of the virtual parameters, finding the optimal pro-
jector input x∗ is technically equivalent to estimating the
scene parameters �̂ (Sec. IV-A), warping function W(·)
(Sec. IV-B), and virtual projector input z and bias terms
θ (Sec. IV-C). Unfortunately, estimating all the parameters
simultaneously in a single step is technically challenging
since this optimization can have many local minimums. As a
practical route for tackling such a challenge, we present a
multi-stage framework (Fig. 3) that estimates the parame-
ters step-by-step using differentiable rendering and will be
detailed in the subsequent sections.

A. ESTIMATION OF THE SCENE PARAMETERS
The first process (Fig. 4) in our framework is to compute
the estimated scene parameters �̂ (in Eq. 3). To this end, we
formulate an objective function as

�̂ = argmin
�̂′

∥∥∥y− f̂ (z, �̂′)∥∥∥2 , (5)

TABLE 1. Notations used throughout the paper.

FIGURE 4. Our estimation of the scene parameters �̂. We set the origin
Co and direction Cd of a camera to [0,0,0] and [0,0,1] and estimate the
geometries Sg and colors Sc of a projection surface using the
camera-captured RGB and depth images. We then estimate the position
Po and direction Pd of a projector by comparing a rendered and
projected output image via differentiable rendering.

where we obtain the estimated scene parameter �̂ that mini-
mizes the squared difference between y and rendered image
f̂ (·).We set the virtual input z by a constant image (e.g., white-
colored). For the y, we generate a black-and-white image
using the two camera-captured images, with and without
a projection mapping. We use the constant image for the
projection mapping. Specifically, we set one to the pixel
colors in y if the color difference is higher than a threshold
(e.g., 0.1) and set zero otherwise. We found that this binary
conversion is beneficial for estimating the scene parameters
more accurately since we can only consider an important
image area directly affected by the projector.

Note that we omit the bias term θ (in Eq. 3) designed
for the color discrepancy between the real and virtual
projector output, and this will be optimized separately
(in Sec. IV-C).
Intuitively, the minimization problem (Eq. 5) is for esti-

mating relative positions and directions among the cam-
era, projector, and surfaces. We set the camera position
Co and direction Cd to [0, 0, 0] and [0, 0, 1], and esti-
mate the coordinates of the other parameters (i.e., rela-
tive distances in positions and directions from the camera
parameters).

For the projection surface, we estimate its geometries
and colors (Sg and Sc) using an RGBD image captured
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FIGURE 5. The estimation of the inverse warping function M. We feed a
checkerboard image z to the real projector and rendering function. Note
that the virtual projection mapping (i.e., the rendering) takes a warped
image (i.e., M′(z)), unlike the real projection. We estimate an optimal
inverse function M that minimizes the squared error between the
rendered and projected output images.

by the camera. We assume that the surface has Lamber-
tian reflectance, and we reconstruct a triangular mesh with
a diffuse texture using the mesh reconstruction libraries,
MeshLab [5] and Open3D [38].

Once we set the parameters for the camera and projection
surface, we solve the optimization problem (Eq. 5) for the
remaining scene parameters (i.e.,Po andPd for the projector)
using a differentiable rendering framework (Mitsuba [24]).
Technically, the framework allows us to simulate the projec-
tion mapping in a virtual space via a general light transport
algorithm (i.e., path tracing [18]) and outputs the optimal
parameters that minimize the squared loss between the given
image y and a rendered image f̂ (z, �̂′) via gradient descent.

B. ESTIMATION OF THE IMAGE WARPING FUNCTION
Once we find the estimated scene parameters �̂ (Sec. IV-A),
we estimate an image warping operatorW:

W = argmin
W ′

∥∥∥f (W ′(z), �)− f̂ (z, �̂)∥∥∥2 , (6)

where we use a checkerboard image for the virtual projector
input z. Unfortunately, this optimization cannot be solved
directly using differentiable rendering since we cannot dif-
ferentiate the unknown function f (W ′(z), �) with respect to
the parameterW ′.
As an alternative, we instead estimate a pseudo inverseM

of the warping W , and then compute the warping W from
the estimated inverse M. Fig. 5 illustrates our process for
the estimation. Specifically, we reformulate the optimization
problem (Eq. 6) into

M = argmin
M′

∥∥∥y− f̂ (M′(z), �̂)
∥∥∥2 . (7)

Note that the parameterM′ is an argument of a differentiable
rendering function f̂ (·), and thus we can optimize it using a

FIGURE 6. Our estimation of the optimal projector input x∗ (x∗ =W(z))
that results in a projected output close to a target image. Once we
estimate the scene parameters and image warping function, we perform
this last process to optimize the projector input using differentiable
rendering. We also consider a bias term θ for compensating a rendering
bias for the final estimation.

differentiable rendering framework. Specifically, we employ
the thin-plate spline (TPS) [6], [7] for representing the M′,
which were also utilized in [12] and [16]. To generate the y,
we project a checkerboard image onto a projection surface,
and we apply a binary transform into each color channel in
the captured image. We set one to the color channel if it is
higher than a threshold (e.g., 0.7). Otherwise, we assign zero
to the values.

After computing the estimated inverse warping M, it is
straightforward to find the image warping W by solving the
simple optimization:

W = argmin
W ′

∥∥W ′(M(z))− z
∥∥2 . (8)

C. ESTIMATION OF THE OPTIMAL PROJECTOR INPUT
IMAGE
Once our estimation processes for the scene parameters �̂
and warping function W finish, our final task (Fig. 6) is
to estimate the optimal projector input x∗ by estimating the
remain parameters (the virtual projector input z and bias
image θ in Eq. 3).
To this end, we formulate an optimization:

z = argmin
z′

∥∥∥yt − (f̂ (z′, �̂)− θ)∥∥∥2 . (9)

As a solver for the optimization, we adopt the differentiable
rendering framework (Mitsuba [24]) that iteratively optimizes
the virtual projector input z using gradient descent. We also
optimize the bias compensation term θ within the framework
by the following update rule:

θi ← θi − α
∂
(
f̂i(z′, �̂)− yi − θi

)2
∂θi

← θi + 2α
(
f̂i(z′, �̂)− yi − θi

)
, (10)
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where the i-th pixel color θi in the bias image θ is updated iter-
atively by gradient descent. We use the subscript i to denote
the i-th pixel color for the other images (f̂ (z′, �̂) and y). In the
equation (Eq. 10), y (y = f (x, �)) is set to a projected output
using a projector input image x (x =W(z′)) and the learning
rate α = 0.01. In our implementation, we update only the
estimated z image without considering the bias θ for the two
hundred iterations in the gradient descent, and then update
both parameters simultaneously for the three hundred itera-
tions. Once we obtain the virtual projector input z, we obtain
the optimal project input x∗ using the virtual input z,
i.e., x∗ =W(z).

V. SYSTEM AND IMPLEMENTATION DETAILS
A. SYSTEM CONFIGURATION
We have used Optoma UHD50X and iPad Pro 12.9-inch
(4th generation) for a projector and RGBD camera in the
projector-camera system (Fig. 2). We have set the image
resolutions for the RGB color and the projector to 640 ×
480 and 800 × 600, which were used in CompenNet++ [12]
and CompenNeSt++ [16], for a fair comparison with the
existing methods (Sec. VI). In addition, we have used a
LiDAR sensor on the tested camera to acquire a depth image
of size 256 × 192 and then upscaled it using OpenCV [2]
so that its resolution becomes the same as the color image,
i.e., 640×480. The resolution of a projector input image has
been set to 600× 600, and the brightness of the projector has
been set to 40 out of 100 levels. Also, we have implemented
a simple iOS application that captures RGBD images and
sends them to a desktop with Nvidia RTX 2080 Ti GPU via
an ethernet connection and disabled the white balancing and
autofocus for the mobile camera device.

B. MODIFICATIONS ON THE DIFFERENTIABLE
RENDERING
We have modified the virtual projector implementation of
the public differentiable rendering framework, Mitsuba [24].
Let us denote a virtual projector emits the area light
(i.e., a projector input image) toward a direction (u, v, 1),
where u ∈ [umin, umax) and v ∈ [vmin, vmax). The orig-
inal implementation assumes a vertically symmetric pro-
jection (i.e., vmax = −vmin), but the tested real projector
(Optoma UHD50X) emits the light asymmetrically. We have
amended the implementation to support a vertically asymmet-
ric projection.

We observed that the differentiable rendering framework
does not find the optimal scene parameters for the projec-
tor effectively when we feed the constant projector image
(i.e., a white-colored image) (in Sec. IV-A) since it can
introduce a discontinuity in the boundaries of a projected
area. We apply a smoothing function that was exploited
in [20] to the projected radiance to mitigate the discontinuity.
Specifically, the output radiance Le(i, j) for the projector input
color at a normalized coordinate (i, j) ∈ [0, 1) is amended

FIGURE 7. Tested projection surfaces (in the top row) and target images
(in the bottom). The blue-colored boxes denote the target display areas
where we want to produce projected output images close to the target
images.

into

L ′e(i, j) = Le(i, j)0(i)0(j), (11)

where 0(·) is a smoothing function:

0(t) =


t/ε 0 ≤ t < ε

1 ε ≤ t < 1− ε
(1− t)/ε 1− ε ≤ t < 1.

(12)

We set the ε to 0.01 so that only the boundary area can be
smoothed.

C. COLOR CLAMPING ON THE VIRTUAL INPUT AND
OUTPUT
The virtual projector and camera can handle HDR colors, but
the tested real projector and camera can project and capture
only LDR colors. For the consistency in the colors between
the real and virtual space, we have clamped the colors of
virtual projector input z and rendering output f̂ (·) so that those
can be in the LDR range:

0 ≤ z ≤ 1, 0 ≤ f̂ (·) ≤ 1. (13)

We have also applied a clamping to the rendering bias term θ
so that it can be in a range:

f̂ (·)− 1 ≤ θ ≤ f̂ (·). (14)

D. PARAMETERS FOR THE DIFFERENTIABLE RENDERING
We have adjusted the field of views for the virtual camera
and projector using the hardware specifications of our tested
camera and projector. Also, we have set the intensity parame-
ter for the virtual projector so that a rendered image can have
a brightness similar to a camera-captured image. Note that
this pre-configuration is only required when configuring a
specific projector-camera device, can be reused for different
projection surfaces and target images. For the forward render-
ing algorithm (i.e., path tracing), we have disabled its indirect
light simulation when we estimate the scene parameters and
image warping functions (Sec. IV-A and IV-B) since those
are affectedmainly by direct lighting.We have simulated both
direct and indirect illumination for the optimal projector input
(Sec. IV-C).
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FIGURE 8. Qualitative comparisons for our method (e) and the state-of-the-art methods, TPS+WarpingNet (b), CompenNet++ (c) and CompenNeSt++ (d).
Compared to the existing methods, our framework produces high-quality output images with reduced visual artifacts. The images ((f) to (i)) are visualized
errors of the tested methods, i.e., absolute color differences between the projected output and corresponding target images.

TABLE 2. Numerical comparisons of the tested methods.

VI. RESULTS AND DISCUSSION
We compare our compensation framework with state-
of-the-art methods, a TPS-based photometric compensa-
tion [10], CompenNet++ [12], and CompenNeSt++ [16].
Since the TPS-based method considered only the color
correction, we have addressed its geometric calibration
using WarpingNet, a subnetwork module in CompenNet++
for a fair comparison. We will refer to this method as
TPS+WarpingNet.

Note that the compared techniques are learning-based
methods requiring training deep neural networks, unlike
our method. Hence, we have retrained their deep neu-
ral networks for a fair comparison. Specifically, we have
retrained the neural networks of CompenNet++ and
CompenNeSt++ for the tested projection surfaces using
the training dataset used for the original papers. For
TPS+WarpingNet, we have retrainedWarpingNet (i.e., a sub-
network for CompenNet++ [12]) using the same training
dataset and used it for the geometric calibration for the
TPS method. Additionally, we have modified the public
implementations of CompenNet++ andCompenNeSt++ (also
the WarpingNet) to handle a projector input image of size
600 × 600, which is larger than their original image resolu-
tion (256 × 256). We have also implemented the TPS-based
technique.

Given a projector-camera system (Fig. 2), our method and
the previous methods are tested using four projection surfaces
and six target images. Fig. 7 shows that the tested projection
surfaces have different shapes and textures. A plane and a
curved surface (the first two columns in Fig. 7) are tested for
the relatively straightforward cases, and we use the surfaces
with vertical and horizontal edges (the last two columns in
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Fig. 7) for challenging scenarios. Also, the six target images
(the bottom of Fig. 7) have been generated using the image
benchmark released by the authors of CompenNet++ and
CompenNeSt++.

We use the peak signal-to-noise ratio (PSNR) and struc-
tural similarity index measure (SSIM) [32] for measuring
the numerical accuracy of the tested methods. To evalu-
ate the numerical metrics, we crop the target display areas
in the camera-captured output images and resize the ground
truth target images to be the same as those of the cropped
images.

A. NUMERICAL COMPARISONS
Table 2 reports the PSNR and SSIM values of the tested
methods for the four projection surfaces. We test the meth-
ods using the six target images for each surface and show
the average PSNR and SSIM numbers. As shown in the
table, our technique produces more accurate results than
state-of-the-art methods. For example, the PSNR numbers
of our results are approximately 2.8 dB, 1.6 dB and 1.9 dB
higher than the TPS+WarpingNet, CompenNet++, and
CompenNeSt++ on average, respectively. Also, our results
have lower perceptual errors (i.e., SSIM) than the previous
methods.

B. QUALITATIVE COMPARISONS
In Fig. 8, we qualitatively compare our projector compensa-
tion and the previous methods. To easily identify their visual
artifacts, we also visualize the errors (i.e., absolute differ-
ences between the projected outputs and target images). Over-
all, our method generates visually more pleasing results than
TPS+WarpingNet, CompenNet++, and CompenNeSt++.
In particular, the existing methods show noticeable visual
artifacts for non-planar surface areas (see the zoomed area
for the vertical edge in the figure). On the other hand,
our method handles such complex geometries relatively
well and shows much-reduced distortion. Also, the previous
approaches show the artifacts propagated from the textured
area (see the zoomed area in the horizontal edge), but our
compensation reduces the errors by adjusting our projec-
tor input accordingly. It indicates that our method using
a full light-transport simulation (i.e., path tracing) can be
more robust against the geometric and color changes in the
projection surface.

C. ABLATION STUDY
In our virtual light simulation, we use two rendering bias
compensation terms, a color bias term θ (Eq. 9) and an image
warping function W (Eq. 6) for a geometric discrepancy
between the real and virtual projection mapping. In Fig. 9,
we compare our results with and without the bias compensa-
tion terms. As shown in the figure, it is noticeable that our
result without the color bias term θ shows a different color
tone compared to the target image. It demonstrates that con-
sidering the bias term when estimating the optimal projector

FIGURE 9. An ablation study for our projection mapping framework.
We compare our projected output (b) with the alternatives that ignore
either the color bias term θ (c) or image warping function W (d). It can be
noticeable that the projected outputs become much more accurate when
considering both estimation errors during our optimization.

input (in Eq. 9) is necessary for resolving the color difference
between the real and virtual projection mapping. Also, it can
be a geometric discrepancy in the positions and directions
between the real and virtual projector-camera pairs. When we
omit the image warping function, i.e., setting the function to
the identity function, our projected output produces a visually
distracting artifact (e.g., see the striped patterns in Fig. 9 (d)).
Our framework that considers both estimation errors shows
much-enhanced results visually and numerically compared to
the tested alternatives.

D. LIMITATIONS AND FUTURE WORK
Our framework does handle non-planar projection surfaces
with colors but still assumes that the surfaces have Lamber-
tian reflectance. As the virtual light transport simulation can
support more complex materials (not just the diffuse mate-
rial), and thus estimating the general bidirectional reflectance
distribution function (BRDF) of the projection surface can
be an interesting future direction for handling more general
projection surfaces (e.g., glossy surfaces).

Our technique optimizes projector input images once the
target images are available and is an offline process. As a
result, the proposed method is only applicable to offline
projection mapping scenarios where we can record optimal
projector input images in advance. For example, the com-
putational overheads for estimating the scene parameters
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(Sec. IV-A), image warping function (Sec. IV-B), and opti-
mal input image (Sec. IV-C) are 10, 25, and 11 minutes,
respectively. One can reuse the first two processes for a static
scene configuration (i.e., a fixed projector-camera pair and
projection surface) and only recompute an optimal projector
input for each target image.

Nevertheless, it would be interesting to investigate a com-
bination of an image to image learning (e.g., Pix2Pix [17])
and our method for interactive projection mapping scenarios.
For example, we can generate a training dataset using our pro-
jection compensation and train an image to image learning to
make an inference quickly instead of optimizing the optimal
input from scratch.

VII. CONCLUSION
We have proposed a new projector compensation framework
that estimates an optimal projector input image to prevent
a visual distortion in a projected output, especially when a
projector surface has colored non-planar geometries. As our
main technical contribution, we approximate the real pro-
jection mapping with a light transport simulation and opti-
mize the projector input image via differentiable rendering.
It enables modeling the complex light transport in a control-
lable space and estimating the optimal input more accurately
than the tested state-of-the-arts. Our compensation frame-
work can be adopted for offline projection mapping scenarios
where high-quality projection results are necessary.
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