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ABSTRACT Projection mapping, which maps a projector input (i.e., an image) onto a physical surface, is
widely used to display user-specified visual content. However, the projected content can become distorted
when an ideal surface, such as a flat and white plane, is unavailable. As a result, adjusting the projector input
using a projector compensation technique becomes necessary to ensure that the projected image matches
the user-provided target image. While various techniques have been proposed for projector compensation,
a recent approach models projection mapping as a simulatable process in virtual space, where a light
transport algorithm simulates the projection mapping. In such rendering frameworks, projector compensation
is typically achieved by iteratively adjusting the projector input via a gradient descent-based optimizer,
starting from an initial guess (often chosen arbitrarily). In this paper, we investigate how to set the initial
values more effectively rather than choosing them arbitrarily. As the main contribution of the paper, we
propose a new initialization scheme that determines the starting values based on a lighting model. We then
integrate this model-guided initialization into gradient descent-based optimization and demonstrate that it
improves projection mapping results, particularly for non-planar and colored surfaces.

INDEX TERMS Projector compensation, lighting model-guided initialization, physically based rendering

for projector compensation

I. INTRODUCTION

Projection mapping has been employed in various applica-
tions, such as augmented reality [1]-[3], entertainment [4],
[5], and digital signage [6], [7], where visual content is dis-
played on physical surfaces. A technical challenge in projec-
tion mapping arises when these surfaces are non-planar or col-
ored. Such complex surfaces can introduce visual distortions
to the projected content. Projector compensation techniques
aim to eliminate these distortions by adjusting the projector
input so that the projected output (i.e., camera-captured im-
ages) visually matches user-provided target images.

One approach to projector compensation is to address the
two main sources of distortion separately. For example, non-
planar geometry can be handled through geometric com-
pensation, which estimates pixel correspondences between
projector input images [2], [8]-[10] and camera-captured im-
ages. In contrast, non-constant surface color can be addressed
through photometric compensation, which adjusts pixel val-
ues in the projector input based on the variations in surface
colors [10]-[12]. This separate handling is effective when the
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projection surface is either non-planar with nearly constant
colors (e.g., white) or planar with some color variations.

However, when projection surfaces are both non-planar and
have spatially varying colors, employing a unified framework
that performs both geometric and photometric compensation
can be more desirable. For instance, learning-based methods
using neural networks have been proposed to infer adjusted
projector inputs that account for both types of distortion [13]—
[15]. An alternative to these approaches is employing a differ-
entiable rendering-based framework that models the camera-
projector system and simulates projection mapping using a
light transport algorithm [16]. This method typically employs
on-the-fly learning, iteratively updating the projector input
starting from an initial guess while minimizing the error
between the simulated projector output and a user-provided
target image using a gradient descent-based optimizer such
as Adam [17].

A straightforward way to initialize this optimization is to
use arbitrary values (e.g., a constant input as in [16]) as the
initial guess. However, in this paper, we demonstrate that
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(b) Projector input
(PCDR)

(c) Projector input
(PCDR w/ ours)

(a) Projection surface

PSNR / SSIM 21.83/0.7697 24.87/0.8547
(d) Target image (e) Projected output (f) Projected output
(PCDR) (PCDR w/ ours)

FIGURE 1. Projection mapping results of the gradient descent-based
projector compensation framework, PCDR [16], on a non-planar curved
surface with textured colors (a). PCDR adjusts the projector input images
((b) and (c)) so that the projected outputs ((e) and (f)) within the target
display area (denoted by a cyan box in (a)) match the user-provided
target image (d). We compute an initial guess of the projector input using
a lighting model and pass this to PCDR, allowing it to begin its iterative
optimization from our output rather than its default initialization (i.e., a
constant input). This modification enables PCDR to produce visually and
numerically improved results without altering its underlying algorithm.

initializing with carefully selected values can significantly
improve the final outcome. Our contributions are summarized
as follows:

« We propose a new initialization scheme that enables a
differentiable rendering-based framework to begin opti-
mization from properly selected initial parameters.

« We determine the initial values by considering the func-
tional relationship between the projector input and its
projected output (i.e., the camera-captured image) using
a well-established lighting model.

We integrate this lighting model-guided initialization into an
existing projector compensation framework as a plug-in mod-
ule and demonstrate that it guides the optimization toward a
more accurate local minimum than arbitrary initialization, as
illustrated in Fig. 1.

Il. RELATED WORK
Identifying geometric correspondences between a projection
surface and a camera, as well as between the surface and
a projector, requires estimating the intrinsic and extrinsic
parameters of both devices [10]. In a seminal work, Zhang [9]
introduced a camera calibration system that utilizes a plane
with a printed checkerboard pattern, which was later extended
for projector calibration (e.g., [18]).

A popular alternative approach employs well-designed
structured light patterns to jointly estimate the parameters of
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a camera and a projector [8], [19], [20], or a camera and
multiple projectors [21]. Scalable calibration methods for
scenarios involving multiple cameras and projectors have also
been proposed [22], [23].

In addition to the geometric calibration techniques men-
tioned above, photometric compensation, which adjusts the
intensity of projected images, is also required when the pro-
jection surface exhibits spatially varying colors. For example,
Grossberg et al. [11] estimated the radiometric relationship
between projector illumination and the intensity observed
by a camera. Chen et al. [12] proposed estimating a sin-
gle color mixing matrix for a projector-camera system and
demonstrated its application for radiometric compensation.
Furthermore, thin-plate spline-based modeling of a nonlinear
mapping between projector and camera images was presented
in [24], [25]. This mapping was also approximated using
polynomials [26] and clustering-based interpolation meth-
ods [27]. Additionally, Pjanic ef al. [28] estimated an opti-
mal color mapping for a more complex scenario involving
multiple projectors and a learning-based approach. A further
learning method employing a neural network trained on pairs
of projector and captured images was also introduced [13].

An alternative to the separate handling of geometric and
photometric compensation is to adjust the projector input for a
camera-projector system through a unified framework. Huang
and Ling [15] proposed a neural framework consisting of two
sub-networks, each responsible for geometric and photomet-
ric correction, respectively. This framework was later further
improved in subsequent work [14]. Additionally, Wang et
al. [29] introduced an efficient neural framework capable
of compensating projector input at high image resolutions.
Li et al. [30] formulated full compensation as an optimization
problem based on a physics-based model that captures the
relationship between the camera and projector images.

As additional examples of leveraging neural networks,
Huang and Ling [31] modeled the mappings between camera
and projector images as image-based shadings using convolu-
tional neural networks, and Erel et al. [32] estimated a neural
reflectance field from multi-view camera images to perform
projector compensation for novel-view synthesis.

A recent alternative to using neural networks for full pro-
jector compensation is to approximate projector mapping us-
ing physically based light transport in a simulatable rendering
space [16], [33], where a (modeled) projector input image
is iteratively optimized through a differentiable rendering
framework (e.g., [34]).

Recent differentiable rendering-based approaches itera-
tively refine a projector input image using a gradient descent-
based optimizer. However, such optimization typically con-
verges to a local minimum rather than a global one. The
accuracy of the result, i.e., the difference between the user-
provided target and the camera-captured image, can depend
on the starting point of the optimization (i.e., the initial guess
for the projector input). This paper proposes a lighting model-
guided initialization method to steer the optimization toward
a desirable minimum rather than relying on arbitrary values
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Projection surface

Target display area

FIGURE 2. lllustration of our experimental projector-camera system,
consisting of a projector (Optoma UHD50X), a camera mounted on an
iPad Pro, and a non-planar textured projection surface. The goal of
projector mapping is to optimize the projector input image so that the
projected output within the target display area closely matches a
user-provided target image. A custom i0S application was used to
capture RGB-D images at a resolution of 640 x 480 and transmit them via
Ethernet to a desktop computer equipped with an NVIDIA RTX 2080 Ti
GPU for projector compensation.

TABLE 1. List of main notations used in this paper.

Symbol Description

Jrareet User-provided target image

1 Camera-captured image

f(om Q) Real-world mapping function
(6™: projector input, £2: real-world scene parameters)

76, Rendering function .
(0: virtual projector input, €2: estimated scene parameters)

w Image warping function to correct geometric discrepancies
between €2 and

B Bias correction term for photometric discrepancies between
£(6,) and £ (6™, )

L(x,wj) Incident radiance at surface point x from incident light direc-
tion w;

p(x,wo,w;)  Bidirectional scattering distribution function (BSDF)

0(u,v) Texel value at texture coordinate (u, v)

(e.g., initializing to zeros as in [16]). We demonstrate that this
simple modification enables a differentiable rendering-based
projector compensation method to achieve improved outputs
without altering the underlying gradient descent-based algo-
rithm.

Ill. BACKGROUND AND PROBLEM SPECIFICATION
Let us consider a projector-camera system in which a projec-
tor projects an input image 6™ onto a surface, and a camera
captures the resulting image (see an example configuration in
Fig. 2).

A projector compensation framework adjusts the projector
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inputimage 6™ so that the camera-captured image I matches a
user-provided target image I**"€%*, The notations used through-
out the paper are summarized in Table 1.

We represent the relationship between the input ™ and the
output / using a mapping function f as follows:

I=£(6"9), (1)

where () denotes all scene parameters that influence the map-
ping f, such as the geometries and materials of the surface,
the position and orientation of the camera, and the position,
direction and intensity of the projector. The scene parameters
2 are assumed to be fixed.

To obtain a desired projector input that produces an output
image I close to the target image 1*“"¢*', the unknown function
f can be approximated by a tractable model f using estimated
scene parameters 2.

We provide a brief overview of PCDR [16], a gradient
descent-based projector compensation framework that ap-
proximates the unknown real-world mapping f using a virtual
model based on physically based light transport:

f(™,Q)=7(6,Q) — B, )

where the rendering function f takes a virtual projector input
6, which is transformed into the real projector input 6 via an
image warping function W (i.e., W(f) = 6™"). Specifically,
the warping function W is computed based on the difference
between the rendered output f (8, Q) and the camera-captured
image I. The term B is a bias correction component that
accounts for the discrepancy between the real output image
= £(6™, ) and the virtual output image f (6, Q).

It is also necessary to compute the estimated scene pa-
rameters ) in order to evaluate the virtual function f 2 Q)
Since modeling all scene parameters in real space is chal-
lenging, PCDR estimates only a subset of them. Specifically,
it assumes that the projection surfaces have Lambertian re-
flectance and estimates their geometries and colors from an
RGB-D image. The positions and orientations of both the
camera and the projector are then determined by minimizing
the squared difference between rendered and captured im-
ages [16].

This process can be performed only once as a pre-
processing step when the scene parameters () are static, as
it is independent of the user-specified target image 1",

After this pre-processing step, the framework minimizes
the following cost function for each user-provided image
Itarget:

R . 2
0* = argmin ‘ 19 79, Q) + IBH . 3)
0

Specifically, the optimized virtual projector input 6* is
computed via an iterative optimization, implemented within
a differentiable rendering framework [34]. During this op-
timization, the bias correction term B is also updated itera-
tively, based on the difference between the virtual rendering
output f 2 Q) and the camera-captured image / obtained
using the real projector input #" = W(#) at each gradient
step.
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Projector input (6)

Lighting model-guided initialization

FIGURE 3. Overview of the projector compensation framework (PCDR) with our lighting model-guided initialization. We leverage a functional relationship
between the camera-captured image and the target image through a lighting model to compute a projector input 6. This computed input is then provided
as the starting point for the gradient descent-based optimization in PCDR, replacing its original initialization (e.g., a constant input).

FIGURE 4. lllustration of our method for computing the projector input 6.
To model the pixel value J, at pixel p in the camera-captured image, we
first generate a ray for p and compute its intersection point x on the
projection surface. The point x is then projected into the projector input
image 0, and the incident radiance L(x, w;) is approximated using the
corresponding texel value 6(u, v). We formulate the direct lighting model
(Eq. 5) using this incident radiance (Eq. 6), which enables the
determination of the projector input image by substituting the pixel value
I, with a desired target value I;""ge' through Eq. 7.

Once the iterative optimization converges, the final projec-
tor input is set as 6™ = W(6*).

A. OUR PROBLEM

The main technical advantage of modeling the unknown func-
tion f with a rendering function f is that it enables mimicking
the real-world process f through physically based light sim-
ulation such as path tracing [35] and allows differentiation
of f with respect to its input parameter ¢, using a differen-
tiable rendering framework [34]. This makes it possible to
apply gradient descent-based optimization (e.g., Adam [17])
to minimize the cost function (Eq. 3).

4

However, to employ such an iterative optimization method
effectively, it is important to initialize the parameter 6 appro-
priately. Note that the optimized parameter 6* (i.e., a local
minimum) obtained through this process does not necessarily
correspond to the global minimum.

A simple strategy is to set the initial value of § manually.
For example, PCDR initializes 6 to zero. Other straightfor-
ward alternatives include assigning the colors of the target
image to the initial value or using a random initialization.
However, such naive strategies can degrade the performance
of projection compensation, leading to a large discrepancy
between the camera-captured image / and the target image
1'*"e®t | since they do not take into account the relationship
between the projector input and output.

In this paper, we propose a new initialization scheme that
improves the performance of a gradient descent-based pro-
jector compensation framework by replacing manual initial-
ization with a lighting model-guided initialization, without
altering the underlying optimization algorithm. The details of
this scheme are presented in the subsequent section.

IV. LIGHTING MODEL-GUIDED INITIALIZATION

This section presents our initialization method for deter-
mining the starting point of the iterative optimization in
the projector compensation framework (see Sec. III). Fig. 3
provides an overview of the proposed initialization process.
The method takes the estimated scene parameters Q) from
the framework as input and determines the starting point of
the optimization under two assumptions: (1) the projection
surfaces have Lambertian reflectance, and (2) the projector
light is the sole light source.

Note that the optimization operates in a virtual space using
the rendering function f. Therefore, our initialization process
focuses on determining a suitable virtual projector input 6
before the optimization begins. To this end, we model the p-th
pixel value I, of the camera-captured image using the direct
lighting integral [36]:

Ip;:z/ p(x, Wy, w;i)L(x,w;) cos Vdw, 4
H
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which integrates the incident radiance L(x,w;) from direc-
tion w; over a hemisphere H at a surface point x, i.e., the
intersection between the projection surface and a primary ray
generated from the virtual camera. p(x, w,, w;) is the bidirec-
tional scattering distribution function (BSDF), and cos ¢ is
computed using the dot product between w; and the surface
normal #n at x. Fig. 4 illustrates this process.

We further simplify the direct lighting formulation by as-
suming that the scene contains only a single point light source,
specifically a light source located at the projector position.
Under this assumption, the direct lighting equation reduces
to:

I, = p(x,w,, w;)L(x,w;) cos V. (5)

We use the projector light model implemented in Mit-
suba [37], which determines the incident radiance L(x,w;)
based on a texture image (# in our case):

L(xywi) - { foxpij2cOs3o¢ lf (MX’VX) € [07 1] (6)

0 otherwise,

where xpro is the position of the virtual projector, and 6 (uy, vy)
is the texel value sampled at (u,,v,) in the texture image
. The projected coordinates (u,,v,) corresponding to the
surface point x are computed by projecting x onto the texture
image 6 using a perspective transformation [37]. In addition,
cosa = —w; - n', where n’ denotes the direction of the
projector. The visibility term V (x, Xpro) is assumed to be 1,
which indicates that no occluders exist between the surface
point x and the projector position Xp.;. The parameter S is a
user-defined scalar that controls the intensity of the projector
light and should be adjusted according to the hardware con-
figuration of the tested projector. In our experiments, we set
S = 2 x 10* based on the hardware setup shown in Fig. 2,
and we used this value for all tests reported in the paper.
The lighting model (Eq. 5 together with Eq. 6) defines a
functional relationship between the camera-captured image /
and the virtual projector input é (i.e., the texture image). Since
our goal is to determine the input 6 such that the resulting im-
age I closely matches the target image 1€, this relationship
enables the computation of §(u,v,) by substituting I, with

1;"** in Eq. 5 and expressing it in terms of 0(u,,v,) using
Eq. 6:
0wy, vx) 1" |lx — X |* cos® (7)
Uy, Vy) = )
X Vx wSp(x,wmwi)COSﬂ
where 1,"* is the p-th pixel value in the target image /%",

Once 0(uy,v,) is computed for each surface point x, which
is identified by a primary ray through pixel p, the texture
values 6(u, v) are assigned at coordinates (u,v) that are spa-
tially close to (i, vy). In our experiments, unless otherwise
specified, sixteen primary rays are generated per pixel p.
However, generating primary rays per pixel does not guar-
antee that every texel will receive at least one value since the
sampling density in texture space can be non-uniform, unlike
image space, where primary rays uniformly sample pixels. As
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Algorithm 1 Lighting model-guided initialization
Input: (), J%eet
Output: Initialized projector input ¢

1:0+0,W 0

2: for each pixel p
3: forn=1toN //generate N rays per pixel

4: Generate a primary ray for pixel p
5: X < ray-surface intersection
6: (uy,vy) < project x to the projector’s texture space
7: Compute 0(uy,vy) #/ Eq. 7
8: for each neighbor (u, v) of (u, vy)
9: w < G(uy —u,vy —v) /Eq.9
10: O(u,v) < 0(u,v) +w- 0(uy,vy)
11: W(u,v) < W(u,v) +w
12: end for
13:  end for
14: end for
15:0 + 0 © W // element-wise division
16: Return 6

a result, some texels can receive no samples (i.e., zero texel
values), as illustrated in Fig. 5(b).

To mitigate this problem, for each projected surface point
(uy,vy), we update not only the nearest texel value but also
its spatial neighborhood (u, v) using a kernel G:

erx e(um VX)G(ux — U,V — V)
Z,\-ex G(”x — U, Vx — V) ’

where X is the set of all surface points obtained from the inter-
sections between the surfaces and primary rays, and 0(u,, v, )
is computed according to Eq. 7. The kernel G is defined as a
truncated Gaussian:

O(u,v) = 8)

202

2 2
G(uy — u, vy —v) = exp (_(ux—u) (=) )7 9

where the bandwidth o is set to 4/3 and the kernel G(u, v)
is truncated such that it becomes zero when |u, — u| > 2 or
[ve —v| > 2. As shown in Fig. 5(c), it drastically reduces
the number of the texels that do not receive any update
values, compared to using only the nearest-neighbor texel as
in Fig. 5(b).

Once the texture image 6 is computed, it is used as the
initial parameter in the gradient descent-based projector com-
pensation framework for the optimization in Eq. 3. The
pseudocode of the proposed initialization process is given in
Algorithm 1.

V. RESULTS AND DISCUSSION

We integrated our initialization scheme into a recent projector
compensation framework, PCDR [16], replacing its original
initialization method (i.e., setting the parameter € to zero)
with our lighting model-guided scheme.
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(a) Projection surface  (b) Nearest neighbor

(¢) Gaussian kernel

FIGURE 5. Initialized projector input images 6 for the projection surface
(a). If we update only the texel 6(u, v) at the nearest position (u, v) to the
projected point (uy, vx) in the projector input image, some texel values
remain uninitialized (i.e., appear as zero pixels), as shown in (b). To
mitigate this, we apply a Gaussian kernel (c) to update the neighboring
texels around (uyx, vx), effectively reducing the number of uninitialized
pixels. For this test, we use 16 rays per pixel.

Specifically, PCDR employs an on-the-fly learning strat-
egy that performs a two-stage optimization process: the first
stage adjusts only the virtual projector input 6 over 200
iterations, excluding the bias term B in Eq. 3; the second stage
jointly optimizes both 6 and B for an additional 300 iterations.
When using our initialization in place of the constant-zero
initialization, we observed that the first stage becomes un-
necessary due to the improved starting point. Consequently,
we skip the initial stage and directly perform joint optimiza-
tion for 500 iterations. We also tested two deep learning-
based projector compensation methods, CompenNet++ [15]
and CompenNeSt++ [14]. We trained the two learning-based
methods using the training dataset provided by Compen-
Net++ on our hardware configuration for fair comparison.

a: Comparisons

We compare the camera-captured results from PCDR with
and without our initialization, along with the outputs
of two learning-based methods, CompenNet++ and Com-
penNeSt++. For these comparisons, we used the first 100 tar-
get images from the CompenNet++ test dataset and evaluated
performance on two projection surfaces. Fig. 6(a) shows the
projection surfaces that have two complex texture patterns on
a curved surface in Fig. 2.

Under this test configuration, each compensation method
is expected to adjust its projector input such that the resulting
projector output (i.e., the captured camera image) closely
matches the user-provided target image shown in Fig. 6(b).
To quantitatively evaluate the quality of these output images,
we report peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) [38], computed based on the
differences between the target and output images.

Table 2 reports the numerical accuracy, i.e., the average
PSNR and SSIM values computed from 100 target images,
while Fig. 6 presents qualitative comparisons for four target
images. Fig. 7 shows the PSNR and SSIM values of all tested
methods across the target images.

6

TABLE 2. PSNR and SSIM comparisons of projector compensation
methods for the two projection surfaces (see Fig. 6(a)). We tested 100
target images for each surface and report the average PSNR and SSIM
values, respectively.

Surface  Method PSNRT  SSIMt
CompenNet++ 20.33 0.7781

Ist CompenNeSt++ 20.02 0.7846
PCDR 21.33 0.7910

PCDR w/ ours 22.47 0.8414
CompenNet++ 22.08 0.7891

ond CompenNeSt++ 22.16 0.7925
PCDR 26.02 0.8338

PCDR w/ ours 27.08 0.8875

As shown in the table and figures, the on-the-fly learning
method (PCDR), which leverages a physically based render-
ing framework, generally outperforms the two learning-based
alternatives. It indicates that modeling the camera-projector
system using a tractable light transport algorithm enables
more accurate adjustment of the projector input by explicitly
accounting for variations in surface materials and geometries.
When PCDR incorporates our initialization scheme, its visual
results and numerical accuracy improve significantly. For
example, as reported in Table 2, integrating our initialization
module into PCDR increases its numerical accuracy by ap-
proximately 1 dB in PSNR and 0.05 in SSIM.

These results highlight the practical importance of properly
setting the initial parameters for gradient descent-based opti-
mization. Notably, this performance gain is achieved through
a simple modification to PCDR: replacing its default initial-
ization with our lighting model-guided scheme.

b: Convergence comparisons of PCDR with and without our
initialization

Fig. 8 compares the numerical convergence of PCDR when
initialized either with the original method (setting the pro-
jector input image 6 to zeros) or with our lighting model-
guided initialization. With the original initialization, PCDR
optimizes 6 alone for the first 200 iterations, then jointly
optimizes both # and the bias term B (as defined in Eq. 3)
for the remaining 300 iterations.

In contrast, when using our initialization, we let PCDR
begin with joint optimization from the start, as the accuracy of
our initial guess is similar to one of PCDR with the original
one after 200 iterations, as shown in Fig. 8. As illustrated,
PCDR with the original initialization starts from significantly
lower PSNR values due to the zero input and requires more
iterations to reach convergence than PCDR with our initializa-
tion. Furthermore, our initialization enables PCDR to achieve
higher final PSNR values after 500 iterations.

c¢: Analysis of reconstruction kernels G

To reduce the number of uninitialized texels in the projector
input image 6, we employ a reconstruction kernel G in Eq. 9.
Fig. 9 compares our chosen Gaussian kernel with an alterna-
tive: bilinear interpolation. As shown, both kernels (bilinear
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FIGURE 6. Comparison of projector compensation frameworks for a projector-camera setup with a curved projection surface (as shown in Fig. 2). We
evaluate two printed textured patterns (shown in (a)) under varying target images. The projected outputs (i.e., camera-captured images) within the target
display area are shown, and we report PSNR and SSIM values based on the differences between the projected outputs and the corresponding target
images. When the projector input is directly set to the target image without any compensation (as in (c)), strong visual artifacts caused by the surface
texture are observed, resulting in low numerical accuracy. Learning-based methods (d) and (e), as well as the differentiable rendering-based approach
PCDR (f), mitigate these distortions to some extent. However, when our initialization technique (g) is integrated into PCDR, both the visual quality and
numerical accuracy further improve. This highlights the practical importance of proper initialization in gradient descent-based optimization for accurate

projector compensation.

and Gaussian) significantly reduce the number of uninitial-
ized texels compared to the nearest-neighbor approach that
does not use spatial filtering. However, our Gaussian kernel
demonstrates greater robustness in initializing texels, partic-
ularly when the number of rays per pixel is small.

d: Analysis of sample counts and computational overheads
Fig. 10 shows the projector input 6 initialized by our tech-
nique before optimization, along with their corresponding
camera-captured images. We vary the number of primary rays
per pixel used during initialization. When a relatively small
number of rays is used (e.g., 1 or 4 samples per pixel), some
pixels in the projector input remain uninitialized (visible as
black pixels), resulting in slightly lower quality in the corre-
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sponding camera-captured images compared to those using
more samples. Increasing the sample count from 16 to 64
does not yield noticeable accuracy improvements. However,
the computational overhead increases from 0.44 seconds to
1.86 seconds. Based on this trade-off, we selected 16 samples
per pixel for tests unless otherwise mentioned. Moreover,
the computational cost of 0.44 seconds for our initialization,
given the selected sample count, is relatively small compared
to the total optimization time of PCDR, which is 495 seconds.

It is worth noting that PCDR is not the only framework
to which our initialization can be applied. Since our method
serves as a plug-in module for gradient descent-based projec-
tor compensation without altering the underlying algorithm, it
can also be integrated into potentially faster frameworks than

7
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FIGURE 7. For the two projection surfaces (a), we plot the PSNR (b) and SSIM (c) values of the four tested methods for each target image (from the 1st to
the 100th). PCDR provides more accurate compensation than the learning-based approaches (CompenNet++ and CompenNeSt++), except for a small
number of cases (e.g., lower SSIM values around the 60th target image for the first surface). When our initialization module is integrated into PCDR, its
numerical accuracy is consistently improved, yielding higher PSNR and SSIM values than PCDR with its original initialization (which sets the initial values
to zero).
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FIGURE 8. Numerical convergence of PCDR when initialized with its original setting versus our lighting model-guided initialization, evaluated across four
target images. The test conditions match those used in Fig. 6. Our initialization enables PCDR to begin gradient descent-based optimization from a
significantly better starting point, as evidenced by the higher PSNR values of PCDR w/ ours compared to those of the original PCDR at the first iteration.
Furthermore, our technique leads to improved final results, enabling the existing framework to achieve higher numerical accuracy by the final iteration.

PCDR. In such cases, it may be desirable to use a smaller
sample count than 16 samples per pixel, e.g., 1 sample per
pixel, which reduces the computational overhead to 33 ms.

e: Analysis of different initialization schemes

In Fig. 11, we compare our lighting model-guided initializa-
tion with two simpler alternatives: 1) target-based initializa-
tion, where the projector input 6 is directly set using the target
image, and 2) random initialization, where 6 is initialized
with values drawn from a uniform distribution. For both
alternatives, we directly start the joint optimization of § and B
in PCDR (Eq. 3), as we do when applying our initialization.
As shown in Fig. 11(b), target-based initialization produces
visual artifacts due to discontinuities in the textured projec-

8

tion surfaces (see Fig. 6(a)). It indicates that directly using
the target image as the optimization starting point can lead
to an undesirable local minimum. Initializing 6 randomly
(Fig. 11(c)) makes the optimization more robust to such
artifacts, but introduces residual noise. Consequently, neither
alternative outperforms the original PCDR initialization. For
example, the original PCDR configuration (i.e., setting the pa-
rameters to zero tested in Fig. 6(f)) achieves higher accuracy
than both target-based and random initialization when tested
on the four target images.

In contrast, our method enables PCDR to produce more ac-
curate and visually pleasing results through a lighting model-
guided initialization. This demonstrates that proper initializa-
tion in gradient descent-based optimization is crucial, as it can

VOLUME 11, 2023
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FIGURE 9. Analysis of the reconstruction kernel G used in our lighting
model-guided initialization. We compare the initialized projector input
images using three settings for G: nearest neighbor without spatial
filtering, bilinear interpolation (b), and a Gaussian kernel (c). Two
sampling rates are tested: 1 ray per pixel (top row) and 16 rays per pixel
(bottom row). Applying spatial filtering ((b) and (c)) helps reduce the
number of uninitialized texels (i.e., zero-value pixels in the resulting
images). Among the tested approaches, the Gaussian kernel (c) yields the
most effective results, particularly at low sampling rates (top row).

guide the process toward a better local minimum.

f: Limitations and future work

A technical limitation of our technique is that it relies on
estimated scene parameters, Q, which are also used as input to
the projector compensation framework (PCDR). Specifically,
this framework assumes that projection surfaces have only
Lambertian reflectance, and our method inherits the same
assumption. We also assume that the surfaces are illuminated
solely by the projector light when estimating the virtual pro-
jector input 6.

In projection mapping scenarios involving glossy surfaces
or external lighting, these assumptions are violated. In such
cases, the gap between the unknown real projection mapping
f and the rendering function f can become large. Although
the optimization in PCDR includes a bias term (B in Eq. 2)
to compensate for this gap, heavy reliance on this term is
undesirable because its estimation can be inaccurate, as it
is modeled simply as the difference between the virtual ren-
dering output and the camera-captured image. Consequently,
when these assumptions are not met (e.g., due to glossy
projection surfaces or external lights), both our initialization
results and the optimization results of PCDR may suffer
reduced accuracy.

As an important direction for future work, it would be
valuable to extend our initialization to handle more complex
materials (i.e., non-Lambertian surfaces) and external light-
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FIGURE 10. Analysis of our lighting model-based initialization using
varying numbers of rays per pixel, ranging from 1 to 64. The first row
shows the initialized projector input images for each sampling rate, while
the second row displays the corresponding projected outputs (prior to
PCDR optimization). Increasing the number of samples improves the
accuracy of the initial projector input; however, the improvement
becomes marginal beyond 16 samples. Given the increasing
computational overhead with higher sample counts, we select 16 rays per
pixel as the default setting, balancing performance and efficiency.

ing without depending on the inputs required by a specific
framework.

Another potential research direction is to investigate inte-
grating our initialization method into other projector com-
pensation frameworks that rely on physically based rendering
(e.g., [33]).

VI. CONCLUSION

In this paper, we presented a new scheme for determining the
starting point of a gradient descent—based optimization that
adjusts the projector input through physically based render-
ing. We employ a well-established lighting (rendering) model
and derive a functional relationship between the observed
camera-captured image and the projector input image. This
relationship allows us to compute the projector input directly
in a virtual space, enabling a given projector compensation
framework to begin its optimization from our output rather
than relying on a manually selected initialization (e.g., con-
stant colors). We demonstrated that incorporating our method
into an existing projector compensation framework leads to
substantial improvements without modifying the underlying
algorithm.

ACKNOWLEDGMENT
We thank the reviewers for their insightful comments, which
have helped improve this work.

REFERENCES

[1] O. Bimber and R. Raskar, Spatial Augmented Reality: Merging Real and
Virtual Worlds. USA: A. K. Peters, Ltd., 2005.

[2] R. Raskar, G. Welch, K.-L. Low, and D. Bandyopadhyay, ‘““Shader lamps:
animating real objects with image-based illumination,” in Proceedings of
the 12th Eurographics Conference on Rendering, ser. EGWR’01. Goslar,
DEU: Eurographics Association, 2001, p. 89-101.



IEEE Access

Sun et al.: Lighting Model-Guided Initialization for Gradient Descent-Based Projector Compensation

' -
27.48/0.8979

- "_ﬁ” QH %

s

L _ { =
PSNR / SSIM 19.01/0.7218  22.72/0.8497  27.48/0.9161
(a) Target (b) Target-based (c) Random (d) Ours
initialization initialization

FIGURE 11. Projected outputs of PCDR using different initialization
schemes for its optimization. We compare our lighting model-guided
initialization (d) with two alternatives: 1) target-based initialization (b)
that assigns the projector input directly from the target image (a) and 2)
random initialization (c) that sets each texel in the projector input image
randomly using a uniform distribution. The surface configurations used in
this test are the same as those in Fig. 6. After optimization, alternative
initializations result in visual artifacts (b) or residual noise (c). In contrast,
PCDR, with our initialization, achieves visually more pleasing and
numerically more accurate results.

[3] A.D. Wilson and H. Benko, “Projected augmented reality with the rooma-
live toolkit,” in Proceedings of the 2016 ACM International Conference
on Interactive Surfaces and Spaces, ser. ISS *16.  New York, NY, USA:
Association for Computing Machinery, 2016, p. 517-520.

[4] M.R.Mine,]J. van Baar, A. Grundhofer, D. Rose, and B. Yang, ‘‘Projection-
based augmented reality in disney theme parks,” Computer, vol. 45, no. 7,
pp. 3240, 2012.

[5] N. Tosa, R. Nakatsu, P. Yunian, and K. Ogata, ‘Projection mapping cel-
ebrating rimpa 400th anniversary,” in 2015 International Conference on
Culture and Computing (Culture Computing), 2015, pp. 18-24.

[6] S.Murayama, I. Torii, and N. Ishii, “Development of projection mapping
with utility of digital signage,” in 2014 IIAI 3rd International Conference
on Advanced Applied Informatics, 2014, pp. 895-900.

[7]1 Y. Hosomizo, D. Iwai, and K. Sato, “A flying projector stabilizing image
fluctuation,” in 2014 IEEE 3rd Global Conference on Consumer Electron-
ics (GCCE), 2014, pp. 31-32.

[8] B. Huang, S. Ozdemir, Y. Tang, C. Liao, and H. Ling, “A single-shot-
per-pose camera-projector calibration system for imperfect planar targets,”
in 2018 IEEE International Symposium on Mixed and Augmented Reality
Adjunct (ISMAR-Adjunct), 2018, pp. 15-20.

[9] Z.Zhang, “A flexible new technique for camera calibration,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp.
1330-1334, 2000.

[10] O. Bimber, D. Iwai, G. Wetzstein, and A. Grundhofer, “The visual com-
puting of projector-camera systems,” in ACM SIGGRAPH 2008 Classes,
ser. SIGGRAPH "08. New York, NY, USA: Association for Computing
Machinery, 2008.

[11] M. Grossberg, H. Peri, S. Nayar, and P. Belhumeur, “Making one object
look like another: controlling appearance using a projector-camera sys-
tem,” in Proceedings of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1, 2004,
pp. 1-8.

[12] X. Chen, X. Yang, S. Xiao, and M. Li, “Color mixing property of a
projector-camera system,” in Proceedings of the 5th ACM/IEEE Interna-
tional Workshop on Projector Camera Systems, set. PROCAMS ’08. New
York, NY, USA: Association for Computing Machinery, 2008.

[13] B.Huang and H. Ling, “End-to-end projector photometric compensation,”
in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). IEEE, Jun. 2019, p. 6803-6812.

[14] B.Huang, T. Sun, and H. Ling, ““End-to-end full projector compensation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 6, pp. 2953-2967, 2022.

[15] B.Huangand H. Ling, “CompenNet++: End-to-end full projector compen-
sation,” in 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), 2019, pp. 7164-7173.

[16] J. Park, D. Jung, and B. Moon, “Projector compensation framework using
differentiable rendering,” IEEE Access, vol. 10, pp. 44 461-44 470, 2022.

[17] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

[18] M. Sugimoto, D. Iwai, K. Ishida, P. Punpongsanon, and K. Sato, “Di-
rectionally decomposing structured light for projector calibration,” IEEE
Transactions on Visualization and Computer Graphics, vol. 27, no. 11, p.
4161-4170, Nov. 2021.

[19] D. Moreno and G. Taubin, ““Simple, accurate, and robust projector-camera
calibration,” in 2012 Second International Conference on 3D Imaging,
Modeling, Processing, Visualization & Transmission, 2012, pp. 464-471.

[20] C. Xie, H. Shishido, Y. Kameda, and I. Kitahara, “A projector calibration
method using a mobile camera for projection mapping system,” in 2019
IEEE International Symposium on Mixed and Augmented Reality Adjunct
(ISMAR-Adjunct), 2019, pp. 261-262.

[21] P. Kurth, V. Lange, C. Siegl, M. Stamminger, and F. Bauer, “Auto-
calibration for dynamic multi-projection mapping on arbitrary surfaces,”
IEEE Transactions on Visualization and Computer Graphics, vol. 24,
no. 11, pp. 2886-2894, 2018.

[22] M. A. Tehrani, M. Gopi, and A. Majumder, ‘‘Automated geometric registra-
tion for multi-projector displays on arbitrary 3d shapes using uncalibrated
devices,” IEEE Transactions on Visualization and Computer Graphics,
vol. 27, no. 4, pp. 2265-2279, 2021.

[23] M. Son and K. Ko, “Multiple projector camera calibration by fiducial
marker detection,” IEEE Access, vol. 11, pp. 78 945-78 955, 2023.

[24] A. Grundhofer, “Practical non-linear photometric projector compensa-
tion,” in 2013 IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, 2013, pp. 924-929.

[25] A. Grundhofer and D. Iwai, “Robust, error-tolerant photometric projector
compensation,” IEEE Transactions on Image Processing, vol. 24, no. 12,
pp. 5086-5099, 2015.

[26] P. Kurth, V. Lange, M. Stamminger, and F. Bauer, “Real-time adaptive
color correction in dynamic projection mapping,” in 2020 IEEE Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR), 2020, pp.
174-184.

[27] Y.Li, A. Majumder, M. Gopi, C. Wang, and J. Zhao, “‘Practical radiometric
compensation for projection display on textured surfaces using a multidi-
mensional model,” Computer Graphics Forum, vol. 37, pp. 365-375, 05
2018.

[28] P.Pjanic, S. Willi, D. Iwai, and A. Grundhéfer, ““Seamless multi-projection
revisited,” IEEE Transactions on Visualization and Computer Graphics,
vol. 24, no. 11, pp. 2963-2973, 2018.

[29] Y. Wang, H. Ling, and B. Huang, “CompenHR: Efficient full compensation
for high-resolution projector,” in 2023 IEEE Conference Virtual Reality
and 3D User Interfaces (VR), 2023, pp. 135-145.

[30] Y.Li, W.Yin,J.Li, and X. Xie, “Physics-based efficient full projector com-
pensation using only natural images,” IEEE Transactions on Visualization
and Computer Graphics, vol. 30, no. 8, pp. 4968-4982, 2024.

[31] B. Huang and H. Ling, ““DeProCams: Simultaneous relighting, compensa-
tion and shape reconstruction for projector-camera systems,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 27, no. 5, pp. 2725—
2735, 2021.

[32] Y. Erel, D. Iwai, and A. H. Bermano, “Neural projection mapping using
reflectance fields,” IEEE Transactions on Visualization and Computer
Graphics, vol. 29, no. 11, p. 4339-4349, Nov. 2023.

VOLUME 11, 2023



Sun et al.: Lighting Model-Guided Initialization for Gradient Descent-Based Projector Compensation

IEEE Access

[33] J.Li, Q. Deng, H. Ling, and B. Huang, “DPCS: Path tracing-based differ-
entiable projector-camera systems,” [EEE Transactions on Visualization
and Computer Graphics, 2025.

[34] M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob, “Mitsuba 2: A
retargetable forward and inverse renderer,” Transactions on Graphics (Pro-
ceedings of SIGGRAPH Asia), vol. 38, no. 6, Dec. 2019.

[35] J. T. Kajiya, “The rendering equation,” in Proceedings of the 13th An-
nual Conference on Computer Graphics and Interactive Techniques, ser.
SIGGRAPH ’86. New York, NY, USA: Association for Computing
Machinery, 1986, p. 143-150.

[36] M. Pharr, W. Jakob, and G. Humphreys, “‘Physically based rendering: From
theory to implementation,” 2023.

[37] W. Jakob, S. Speierer, N. Roussel, M. Nimier-David, D. Vicini, T. Zeltner,
B. Nicolet, M. Crespo, V. Leroy, and Z. Zhang, ‘“Mitsuba 3 renderer,” 2022,
https://mitsuba-renderer.org.

[38] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE Transactions on
Image Processing, vol. 13, no. 4, pp. 600-612, 2004.

WOOCHAN SUN received the B.S. degree from
the Department of Applied Artificial Intelligence,
Ajou University in 2022, and the M.S. degree

> | from the Department of AI Convergence, College

-2 of Information and Computing, Gwangju Institute

-‘” of Science and Technology (GIST) in 2025. His
y

research interests include inverse rendering and
I computer vision.

GEONU NOH received the B.S degree from the
School of Electrical Engineering and Computer
Science, Gwangju Institute of Science and Tech-
nology (GIST) in 2020. He is currently pursuing
the integrated M.S. and Ph.D. degree in Depart-
ment of AI Convergence, College of Information
and Computing, Gwangju Institute of Science and
Technology. His research interests are rendering
and denoising.

KWANGHEE KO received the B.S. degree in naval
architecture and ocean engineering from Seoul Na-
tional University, in 1995, and the M..S. degree in
mechanical and ocean engineering and the Ph.D.
degree in ocean engineering from MIT, in 2001
and 2003, respectively. From 2003 to 2004, he
was a Postdoctoral Researcher with the Seagrant
College Program, MIT. From 2004 to 2005, he was
a Research Associate with the Stevens Institute
of Technology. He joined the Gwangju Institute
of Science and Technology, in 2006. He was an assistant professor, from
2006 to 2010, an associate professor, from 2010 to 2016, and has been a
professor, since 2016. He is currently a Professor with the Gwangju Institute
of Science and Technology, Republic of Korea. His research interests include
CAD/CAM/CAE, geometric modeling, digital twin application, projection
mapping, virtual reality, and augmented reality.

VOLUME 11, 2023

v

BOCHANG MOON (Memeber, IEEE) received
the M.S and Ph.D. degrees in computer science
from KAIST, in 2010 and 2014, respectively. He
is an associate professor at Gwangju Institute of
Science and Technology (GIST). Before joining
GIST, he was a postdoctoral researcher at Disney
Research. His research interests include rendering,
denoising, and augmented and virtual reality.



	Introduction
	Related work
	Background and Problem Specification
	Our problem

	Lighting Model-Guided Initialization
	Results and Discussion
	Conclusion
	REFERENCES
	WOOCHAN SUN
	GEONU NOH
	KWANGHEE KO
	BOCHANG MOON


