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Figure 1: Given gradient-domain path tracing (G-PT), we visualize the noisy input color (a) and gradients, (b) and (c), and our feature
image (d). Our feature (d) is fed into a state-of-the-art denoising method, adaptive polynomial rendering (APR), and this denoiser greatly
reduces a numerical error, i.e., relative mean squared error (relMSE), thanks to our high-quality feature image.

Abstract
In this paper, we propose a new technique to incorporate recent adaptive rendering approaches built upon local regression
theory into a gradient-domain path tracing framework, in order to achieve high-quality rendering results. Our method aims to
reduce random artifacts introduced by random sampling on image colors and gradients. Our high-level approach is to identify
a feature image from noisy gradients, and pass the image to an existing local regression based adaptive method so that adaptive
sampling and reconstruction using our feature can boost the performance of gradient-domain rendering. To fulfill our idea, we
derive an ideal feature in the form of image gradients and propose an estimation process for the ideal feature in the presence
of noise in image gradients. We demonstrate that our integrated adaptive solution leads to performance improvement for a
gradient-domain path tracer, by seamlessly incorporating recent adaptive sampling and reconstruction strategies through our
estimated feature.

CCS Concepts
•Computing methodologies → Ray tracing;

1. Introduction

Monte Carlo (MC) ray tracing [Kaj86] has been a widely used ren-
dering solution thanks to its generality in terms of synthesizing a
variety of photorealistic rendering effects. The fundamental draw-
back of MC ray tracing is, however, that it requires a huge amount
of ray samples to get rid of random noise stemming from MC inte-
gration.

Recently, gradient-domain rendering methods [LKL∗13,
KMA∗15] were proposed as a novel, yet effective solution to
employ image gradients in addition to radiance values. These
methods robustly estimate the gradients by building offset light
paths, which have a high correlation to original light paths.

Especially, the gradient-domain path tracing (G-PT) [KMA∗15]
has demonstrated that a high-quality image can be generated by a
Poisson reconstruction method, even with a simple modification to
an existing rendering solution, i.e., path tracing.

The gradient-domain rendering approaches show promising re-
sults that can lead to an alternative of existing rendering solutions
by significantly reducing noise (i.e., variance), but these methods
still suffer from the random artifacts as estimated gradients are also
random variables that can have high variances given a small num-
ber of samples.

As an active research direction with regard to reducing MC
noise, image-space adaptive rendering methods (e.g., [SD12,
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RMZ13]) have been successfully applied to existing MC ray trac-
ing methods, while exploiting simplicity introduced by its image-
space nature. The key technical components of those techniques are
an adaptive reconstruction that fully utilizes rendering-specific fea-
tures (e.g., normals, textures, and depths) and an adaptive sampling
that distributes additional samples non-uniformly to minimize er-
rors of reconstructed images.

As a recent attempt in this direction, local regression based adap-
tive methods [MCY14, MMMG16] demonstrated that high-quality
reconstruction output can be produced when a high correlation be-
tween the features and ground truth images exists. However, it is
still unclear how those can be employed for a gradient-domain ren-
dering framework while fully employing the additional informa-
tion, i.e., image gradients, in their adaptive rendering methods. In
this paper, we present a new technical solution to allow for seam-
lessly integrating recent local regression based adaptive methods
into a gradient-domain method, e.g., G-PT.

To this end, our key idea is to create a new feature using image
gradients and feed the feature into adaptive methods so that both
techniques (gradient-domain path tracing and adaptive approach)
become mutually complementary for generating high-quality ren-
dering output. Implementing the idea, however, requires to address
a fundamental question, what is the ideal feature for the local re-
gression based adaptive techniques. This question leads us to pro-
vide a solution that integrates the gradient-domain path tracing with
a local regression based adaptive method. Specifically, we propose
the following technical contributions:

• We derive an ideal feature for the state-of-the-art reconstruction
based on local regression and transform the estimation prob-
lem for the ideal feature into the standard Poisson reconstruction
problem, where image gradients can be employed.
• A weighted least squares is introduced to deal with heteroge-

neous variances of estimated gradients. This comes with a minor
modification on the standard Poisson reconstruction, but with a
high accuracy improvement.
• We adapt a bootstrap aggregating (bagging) to reduce the vari-

ances of estimated ideal features, and this allows for using an
existing pre-filtering of recent adaptive methods by providing re-
construction variances of our feature.

We have demonstrated that our technical idea outperforms the
state-of-the-art method [MVZ16], which extends a screened Pois-
son reconstruction to employ rendering-specific features for the
gradient-domain rendering. Our result shows a performance im-
provement (e.g., up to 2× lower error than the previous method)
for a gradient-domain path tracer, by feeding our estimated ideal
feature to a state-of-the-art adaptive method.

2. Related Work

In this section, we review prior methods directly related to our
work.

Gradient-Domain Rendering. Gradient has been widely used as
an additional information in the area of photorealistic rendering.
One of the typical examples is the irradiance caching [WH92] and
radiance caching techniques [KGPB05, JDZJ08] where gradients

are employed to improve interpolation accuracy of irradiance or
radiance values.

Recently, gradient-domain rendering has been studied as an al-
ternative to Monte Carlo ray tracing methods. The gradient-domain
rendering method [LKL∗13] extended the existing Metropolis light
transport to estimate image gradients, i.e., finite differences be-
tween adjacent pixels, followed by solving a screened Poisson
equation for generating a final image. Kettunen et al. [KMA∗15]
demonstrated that a simple modification (e.g., offset light paths
with a pixel distance) to path tracing allows for estimating im-
age gradients efficiently, and reconstructed a final image using a
screened Poisson reconstruction that takes the gradients as well
as image colors as input. In addition, the Poisson reconstruction
was recently extended from 2D to 3D so that the temporal coher-
ence between frames can be utilized [MKD∗16]. These methods
demonstrated that reconstructed images using estimated gradients
can have less variances than ordinary rendering output (e.g., path
traced images), thanks to a high correlation between base and off-
set light paths.

These gradient-domain techniques utilized the sparsity of gradi-
ents of natural images [PGB03], but a challenge in rendering is that
the gradients are random variables analogous to colors. For exam-
ple, Kettunen et al. [KMA∗15] computed image gradients with a
sample mean of gradient samples, and those gradients are also af-
fected by random noise unless an infinite number of samples are
used. Furthermore, those errors (i.e., variances of gradients) have
the heterogeneous property that the variances of estimated gradi-
ents can vary significantly across image regions. This challenge in-
troduced by the heterogeneous noise motivates the usage of adap-
tive sampling and reconstruction, and we propose an integrated so-
lution between the gradient-domain rendering and adaptive meth-
ods via a novel feature generation.

Adaptive Rendering with Features. Adaptive sampling and re-
construction has a long history [Kaj86]. A notable research direc-
tion for the adaptive rendering was to analyze a local frequency
of light transport [DHS∗05, BBS14], and a comprehensive survey
on this topic is available [ZJL∗15]. We focus on the image-space
adaptive approaches that employ rendering-specific features (e.g.,
normal, texture, depth and visibility buffers), as those are directly
related to our work.

Sen and Darabi [SD12] introduced a mutual information to sta-
tistically measure a functional relationship between random param-
eters and features, and optimized denoising parameters. Rousselle
et al. [RMZ13] proposed an adaptive sampling and reconstruction
technique that utilizes a variety of features such as G-buffers (nor-
mal, texture, and depth buffers) and caustics. Recently, Moon et
al. [MCY14] applied a local regression theory to this adaptive ren-
dering problem, and estimated optimal denoising parameters and
adjusted sampling density across the image. This local regression
based method was improved in terms of efficiency via sparse recon-
struction [MIGYM15], or robustness through high-order polynomi-
als [MMMG16] and non-local means weighting [BRM∗16]. The
main advantage guided by these adaptive methods is that these ap-
proaches are able to handle the heterogeneous noise appropriately
by adjusting denoising parameters and sampling density across the
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Figure 2: This figure illustrates the overall flow of our approach
utilizing ideal features within the gradient-domain path tracer (G-
PT). Our method also allows for recent adaptive reconstruction and
sampling, which performs error analysis and generates sampling
maps for G-PT. Our main contribution lies on the feature genera-
tion module (shown in the magenta color) utilizing image gradients
generated by G-PT. Since our technique of generating and utilizing
features is well modularized, an adaptive rendering method can be
integrated into the G-PT framework without major changes in the
existing approaches.

image. These methods, however, were mainly integrated into the
ordinary Monte Carlo rendering framework.

Recently, Manzi et al. [MVZ16] proposed a regularized recon-
struction that employs rendering-specific features (and its gradi-
ents) in the gradient-domain rendering framework [KMA∗15]. It
enabled to improve the original reconstruction, while preserving
high-frequency details contained in feature buffers. However, pro-
ducing high-quality results is still challenging in regions where fea-
tures fail to predict edges, as the high-frequency information should
be reconstructed by noisy gradients in this case. Our method also
aims at keeping high-frequency edges, while reducing noise for the
gradient-domain rendering. Departing from this approach, we take
a totally different approach, and propose a new integrated solution
for performing adaptive rendering (sampling and reconstruction)
given a gradient-domain renderer, by passing a novel feature com-
puted from image gradients into a local regression based adaptive
method.

3. Ideal Feature for Reconstruction

In this section, we describe local regression based reconstruction
methods that utilize features as edge-stopping functions, and then
derive an ideal feature that minimizes reconstruction errors.

3.1. Local Regression based Reconstruction

The local regression methods assume a general statistical model:

g̃(i)≡ g̃( fi) = g( fi)+ εi, (1)

where g̃(i) is the noisy intensity at a pixel i = (x,y) generated by
Monte Carlo ray tracing. The image function g̃(i) can be defined

on a high-dimensional feature space fi that includes the pixel po-
sition and rendering-specific information such as normal, texture,
and depth values [MCY14]. The input intensity g̃( fi) is assumed
to be corrupted by a random error εi, which is an independent and
identically distributed value with the zero mean E(εi) = 0 and also
has a finite variance. The ultimate goal of the reconstruction is to
reconstruct the unknown term g( fi) from the observed input g̃( fi).

Based on the statistical model, the regression methods locally
approximate the ground truth, g( fi), with a k-order function using:

g( fi)≈ g( fc)+
k

∑
j=1

g( j)( fc)
( fi− fc) j

j!
, (2)

where fi and fc are feature values at pixel i and c and the super-
script ( j) denotes j-times differentiation. We use the Taylor ap-
proximation (Eq. 2) that assumes 1D feature for simplicity, but
this can be easily extended to a multi-dimensional version for a
high-dimensional feature. When an enough order k is provided, the
approximation error becomes zero as this approximation function
goes to a function that interpolates each value g( fi), as discussed in
a recent regression based denoising paper [MMMG16].

Technically, the approximation error (i.e., remainder terms of
Taylor series) is directly related to the reconstruction bias E(ĝ( fi)−
g( fi)), where ĝ( fi) is the final output by a local regression based
reconstruction. A mathematical derivation for the bias expression
is available in a local regression literature [RW94]. As a special
case, if the approximation (Eq. 2) by a local model is exact, the
approximation error (also the bias) becomes zero. Unfortunately,
the variance tends to be increased as the order, k, of a local model
increases. This trade-off between the variance and bias with regard
to the order k has been widely studied in local regression litera-
tures [CL96].

Based on this regression theory, we present a technique to gener-
ate a new feature fi, in order to reduce the approximation error even
with a low order k while maintaining a low variance for a gradient-
domain framework. Our approach may be considered similar to
the prior reconstruction method [MVZ16] for a gradient-domain
rendering system, as both methods are reducing random artifacts
caused by noise of estimated gradients. However, the main differ-
ence is that our technique constitutes a new feature and feeds the
feature into existing adaptive rendering methods as an additional
one so that both adaptive sampling and reconstruction functionali-
ties can be utilized for a gradient-domain rendering framework.

3.2. Ideal Feature for Local Regression

While local regression methods for reconstruction have been
widely studied, choosing better or ideal features has been less stud-
ied. In this section, we discuss properties of ideal features for the
local regression methods.

Ideally, a feature should provide a low approximation error (also
a low squared bias) so that a local model with a low order (e.g.,
linear function) can be selected. In this sense, an ideal feature fi
can be defined as a feature that has a perfect linear correlation with
the ground truth:

g( fi) =C1 fi +C2 (C1,C2 ∈ R,C1 6= 0). (3)
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In this case, higher order derivatives (from second derivatives)
with respect to the feature fi become zero, and thus the error by
the approximation (Eq. 2) also becomes zero even though the local
model is defined as the linear function.

In practice, this linear relationship is not useful for our problem
of generating an ideal feature fi, as it requires the ground truth func-
tion g( fi) that is just the ultimate goal of reconstruction. Hence we
further expand this relationship by differentiating g( fi) with respect
to image coordinates i:

dg( fi)
di

=
dg( fi)

d fi
d fi
di
⇒

dg(i)
di

=C1
d fi
di

.

(4)

Note that the feature fi is also an image function that gives a value
at the pixel position i, and g( fi)≡ g(i) thanks to Eq. 1. The constant
term C1 can be arbitrary chosen except for C1 6= 0, and we thus set
this constant 1. Therefore, the final form has a simple relationship
dg(i)

di = d fi
di .

This simple relationship implies that an ideal feature is an image
function that has equivalent derivatives to those of the ground truth
image function g(i). Furthermore, according to this relationship,
computing the ideal feature under the linear model is translated into
solving a Poisson equation, which has been extensively studied.
According to the best of our knowledge, the relationship between
an ideal feature and Poisson equation has not been discussed in the
related field.

Poisson Reconstruction. Solving the Poisson equation has been
studied well in gradient-domain image processing such as image
composition [Aga07]. Nonetheless, these techniques aim to com-
pute final colors, not the features, when the image gradients dg(i)

di
are given. Unfortunately, the ground truth image gradients are un-
known in rendering, and thus we should estimate the gradients to
compute the ideal features and it typically introduces an estimation
error (e.g., noise). In a way, this is also a chicken-and-egg problem,
since computing the ideal features is transformed into an estima-
tion problem for image gradients. In the next section, we propose a
feature generation process to tackle this technical challenge. Fig. 2
shows our overall process to generate and utilize an ideal feature
within a gradient-domain path tracing framework.

4. Ideal Feature Generation

In this section, we propose an estimation process to generate a fea-
ture function fi given the ideal relationship dg(i)

di = d fi
di . This ideal

relationship leads to the standard Poisson reconstruction problem
for 2D images [BCCZ08] that minimizes the following:

argmin
f

∥∥∥∥(∇dx f
∇dy f

)
−
(

vdx

vdy

)∥∥∥∥2

, (5)

where ∇dx and ∇dy are the image gradient operators along x
and y directions (e.g., finite differences) applied to f (a vectorized
feature image from fi), and vdx and vdy are given gradients that
estimate ∇dxg and ∇dyg, respectively. The gradient-domain path
tracing [KMA∗15] proposed a simple, yet effective way to estimate

the image gradients (vdx and vdy) by utilizing the offset paths that
have a high correlation with an original path. We adopt the previous
method that estimates the gradients for our problem.

The previous work [KMA∗15] employed the screened Poisson
reconstruction that adds a soft-constraint, α||g̃(i)− f ||2, into the
minimization goal (Eq. 5) with a user parameter α, but our problem
of feature generation does not require this additional term. This is
mainly because the ideal feature image is not necessary to become
the ground truth image, i.e., C2 can be an arbitrary number in Eq. 3.

The solution of minimizing the objective function (Eq. 5) has
been extensively studied in gradient-domain composition prob-
lems [Aga07], and it can be represented by a sparse linear system:

LT L f = LT v, (6)

where L is the sparse matrix consisting of the Laplacian operator.
This equation is essentially the normal equation of an ordinary least
squares (OLS). In addition, this is a sparse linear system, and thus
can be efficiently solved by an iterative solver (e.g., conjugate gra-
dient). As we convert the ideal feature problem into the standard
Poisson equation widely used in gradient-domain problems, this
reconstruction part can be easily interpreted.

The main challenge in rendering, however, is that the computed
gradient value at each pixel is a random variable containing noise,
which typically has a non-uniform distribution across image space.
For example, the gradient-domain rendering [KMA∗15] estimated
image gradients as sample means of the finite differences between
radiances of offset paths and original random paths. When the num-
ber of samples is small, the variance of the gradient values can be
high, leading to noisy output, i.e., noisy feature image f . Fig. 3 (d)
shows a feature image generated by solving the linear system with-
out modification (Eq. 6).

This noisy feature can lead to a non-trivial problem in recon-
struction, since the statistical model of the local regression (Eq. 1)
assumes that the feature image f is noise-free. Hence we propose
two main technical contributions in subsequent sections to robustly
estimate the feature image f given the noisy gradients.

4.1. Weighted Least Squares

We statistically model the image gradient vi (i.e., the sample mean
of estimated gradient samples), at pixel i as the following:

vi =∇gi + ei, (7)

where ei is a random error that has the zero mean, i.e., E(ei) = 0,
and a finite variance Var(ei).

The solution of OLS (Eq. 6) has known as the best linear unbi-
ased estimator (BLUE), if the errors ei are uncorrelated with the
zero mean and have equal variances (i.e., ei = e j when i 6= j) under
the Gauss-Markov theorem [Sta09]. We are able to suppose that
each sample mean vi is independent each other as the sample mean
is constructed by offsets of random samples from unbiased MC ray
tracing (e.g., path tracing), but in rendering the homogeneity as-
sumption typically breaks down. In other words, the MC error ei of
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Figure 3: Features generated by different approaches, given input gradients (b) and (c) from G-PT. The feature image (d) computed by or-
dinary least squares (OLS) exhibits image artifacts due to heterogeneous errors of estimated image gradients. Weighted least squares (WLS)
guided by the variances of sampled gradients mitigates this problem, but leaves some spike noise caused by overfitting (e). Bootstrap aggre-
gating (bagging), which averages the multiple results of WLS, reduces the noise and thus produces an improved feature image (f).

the observed gradients vi can significantly vary locally across im-
age regions. As a result, the output of OLS is still unbiased, but not
the best in terms of realizing the minimum variance.

Our idea is to employ a statistical adaption, weighted least
squares (WLS) [Sta09], to restore the BLUE property by taking
account of unequal variances, i.e., heterogeneity:

(LTWL) f = LTWv, (8)

where W is a diagonal matrix that has the element Wii =
1

Var(ei)
.

In the gradient-domain path tracing, we can estimate Var(ei) as
the variance of sample mean vi at a pixel i, since the estimated gra-
dients are an average of gradient samples. In the case that the errors
ei are correlated, the weighted matrix W needs to be the inverse of
the variance-covariance matrix, but in our case we can simply set
W to be the diagonal matrix.

This is a simple modification to the standard Poisson reconstruc-
tion, but the quality improvement in terms of noise (i.e., variance)
of feature images can be significant, especially when the distribu-
tion of the errors ei is skewed. In Fig. 3, OLS generates artifacts
(e.g., dipole artifacts) especially near edges where the variances of
estimated gradients are much higher than other parts. Our simple
alteration in the reconstruction produces an improved feature f by
taking account of unequal variances.

Weighting each row in the linear system (Eq. 8) itself was previ-
ously investigated in the L1 reconstruction [KMA∗15], which per-
forms an iteratively reweighted least squares where the diagonal
matrix W is updated by a function of residuals from the previous it-
eration. Also, a conceptually similar weighting was designed from
a control variates standpoint [RJN16]. Similar to these previous ap-
proaches, we weight each gradient to mitigate the heterogeneity
in estimated gradients. Nevertheless, our approach adopts a very
simple weighting scheme that relies on a different perspective, i.e.,
Gauss-Markov theorem [Sta09].

Our method drastically reduces the variance, but the estimated
feature from WLS still shows some spike noise because of noisy
gradients. Technically, this is an overfitting problem occurred in
a regression context including least squares fitting. As aforemen-
tioned, the noise in feature images can be propagated into the final
result of reconstruction methods. We thus propose a general solu-
tion to mitigate this overfitting issue in the next section.

Algorithm 1 Robust Feature Generation

Input: Gradient samples si = (s1
i , ...,s

ni
i ) per each pixel i

Output: Features f and variances Var( f )
for Iteration b = 1 to B do

for pixel i do
Resample |si| gradient samples, si(b), from the set si

Compute the sample mean vi(b) =
∑

ni
j=1 s j

i
ni

Calculate the variance of the sample mean Var(vi(b))
end for
Solve (LTWL) f (b) = LTWv(b) with Wii = 1

Var(vi(b))
(Sec. 4.1)
end for
for pixel i do

Compute the sample mean fi = 1
B ∑

B
b=1 fi(b)

Compute the variance of the feature Var( fi)
end for
return Features f and variances Var( f )

4.2. Bagging with Adaptive Weights

Given the WLS solution, we introduce a bootstrap aggregating, also
called bagging, which is commonly used to avoid overfitting (i.e.,
reduce variance) in machine learning techniques (e.g., decision tree
methods [Alp04]). Bagging is a simple but general process, which
averages multiple outputs of regression (e.g., WLS) by computing
new training sets from an input set (e.g., gradient samples). The
sets are randomly generated with replacement by a uniform random
function from the input set.

Our bagging process is built upon the original bagging
method [Alp04] that changes sample data by resampling in each
run, but we make adaptation tailored to our problem. In particular,
we measure reliability of each bootstrapped sample set by the vari-
ance. In other words, we use the uniform random function that se-
lects problematic samples (i.e., outliers) equally compared to other
normal samples, but the problematic case tends to have a higher
variance than the case where no outliers are chosen. The variances
as well as the resampled gradients are passed to our regression,
WLS, to perform a least squares that down-weights unreliable sam-
ples by the variances. Algorithm 1 shows the pseudocode of our
bagging process for generating a robust feature image f .

In Fig. 3, our proposed bagging alleviates the overfitting issue.
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In addition, an inherent advantage of the bagging process is that it
allows us to compute the variance of our estimated feature f , which
can be utilized in pre-filtering of recent reconstruction methods. We
employ a recent non-local means filter [RMZ13] to further reduce
the remaining noise (i.e., Var( f )).

As the final step of our method, we pass the constructed fea-
ture f into denoising methods (e.g., adaptive polynomial render-
ing [MMMG16]), to generate a final output or a sampling map to
adaptively redistribute ray samples over the image space. Note that
adaptive sampling that guides more samples on high reconstruction
errors is a technical advantage of recent adaptive methods, and our
feature generation allows to integrate this adaptive sampling into
the gradient-domain path tracing.

5. Implementation Details

We have implemented our feature generation on top of the gradient-
domain path tracing (G-PT) [KMA∗15]. Specifically, we have em-
ployed the source code provided by the authors. To implement our
bagging procedure, we have stored gradient samples per pixel to
compute the sample means and variances of bootstrap samples (i.e.,
gradients). While this approach is conceptually simple, it may re-
quire a non-trivial computational and memory overhead when a
large number of samples are used. To reduce the overhead, we have
sub-averaged multiple samples into a pre-defined set of bins (e.g.,
eight bins per pixel) instead of storing all samples individually. As
a result, our bagging process is performed using the sub-averaged
samples. Technically, it is equivalent for our bagging process to se-
lect all the samples within a bin at a time. Given the small number
of bins, we found that a small iteration count (e.g., ten times) used
in the bagging compromises the balance between quality of our es-
timated feature and computational overhead properly.

For the final reconstruction, we use a recent denoising method,
adaptive polynomial rendering (APR) [MMMG16] that approxi-
mates an image region with 2D image polynomials. This method
also employs rendering-specific features (i.e., normal, texture, and
depth buffers) in a linear form. As this method takes an arbitrary
set of rendering-specific features as input, we additionally include
an ambient occlusion buffer [MVZ16] for improving their denois-
ing quality. Since most recent adaptive methods including APR
(e.g., [RMZ13], [MCY14], [MIGYM15], [BRM∗16]) are able to
work with other features (including our feature) without changing
their main algorithms, we simply feed our estimated ideal feature
to APR so that the method produces either a sampling map for in-
termediate stages or a final image for the last step.

As the pre-filtering that takes our feature and its variance, we
adopt the non-local means filter [RMZ13] that adjusts an amount of
blurring by variances. We use a 7×7 patch and 11×11 denoising
window for the pre-filtering. In addition, for APR we use a 43×
43 filtering window and three iterations for its adaptive sampling
where additional samples are distributed across images.

Our approach works well in most cases, but we found that it
can have difficulty given an extreme scenario where the underlying
gradient estimation (i.e., G-PT) fails to capture meaningful gradi-
ent structures. In rendering, this is common when a light path can
be computed only on a low probability, e.g., scenes where indirect

illumination is dominant. When we fail to find light paths, most ra-
diance samples can end up zero radiances, and thus there is only a
low chance for capturing proper gradient samples.

Our simple idea for such non-visible paths is to add an ambi-
ent light with a very small intensity (e.g., 0.01) during estimating
image gradients. The ambient lighting is a well-known heuristic in
rendering [RPG99], and it illuminates all parts in a scene equally.
Computing the input gradients of G-PT in a principled manner even
for the extreme case is out of the scope of this work, but we found
that our simple heuristic alleviates the difficulty of estimating im-
age gradients, when non-visible paths are generated.

6. Results and Discussion

We have tested our method on a Windows machine with a
Xeon 3.0 GHz CPU and NVidia GTX 1080 Ti graphics card.
Given the recent gradient-domain path tracing (G-PT) frame-
work [KMA∗15], we have compared our method with the L1 re-
construction that directly computes the final image without utiliz-
ing adaptive rendering methods [KMA∗15]. We have also tested a
regularized L1 reconstruction [MVZ16] that adapts the original re-
construction using a constraint term formed by G-buffers. Specifi-
cally, the additional features of the method include normal, texture,
world coordinates and ambient occlusion buffers.

We have also tested APR by varying its features. For example,
we have run APR with G-buffers (normal, texture, and depth and
ambient occlusion buffers), which do not utilize image gradients
generated by G-PT. Also, this method is set to employ only our
feature instead of the G-buffers. Additionally, we run APR by uti-
lizing both features (G-buffers and our feature) and other potential
combinations (e.g., image gradients or L1 image).

For clear visual comparisons, we additionally include noisy
color buffers (input color) of G-PT without any post-reconstruction.
For comparing numerical accuracy of each method, we have used
the relative mean squared error (relMSE) [RKZ11].

Scenes. For our tests, we have used the following scenes: 1) DOF-
Kitchen, 2) Kitchen, 3) Bathroom, and 4) Door. We have used
1280 × 720 image resolutions for the tested scenes. For the DOF-
Kitchen scene (first row in Fig. 5), we simulate a depth-of-field
effect to verify robustness of our feature against the distributed ef-
fect. The Kitchen scene (second row in Fig. 5) is a glossy-dominant
scene where most high-frequency edges are generated by glossy
reflections, and these scenarios introduce a technical challenge for
recent denoising methods depending on G-buffers that can capture
only a limited set of edges (e.g., discontinuities of normals, texture
and depth). On the other hand, the Bathroom and Door scenes (third
and fourth rows in Fig. 5) are cases that work well with G-buffers
based denoising methods, since most edges can be predictable by
the geometric information. However, the estimated gradients tend
to be very noisy due to the scene configuration where indirect light-
ing is dominant.

Comparisons with Other Features. Fig. 4 shows results of the
state-of-the-art adaptive rendering, APR, with different feature sets,
as recent denoising methods are able to include arbitrary features
within the denoising process. We disable the adaptive sampling of
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(a) Input color, 256spp 
relMSE 0.1002

(c) Normal (d) Depth (e) Ambient occlusion

(f) APR w/ G-buffers
relMSE 0.0080

(g) Gradients along x (h) Gradients along y (i) APR w/ gradients
relMSE 0.0251

(l) Our feature (m) APR w/ ours
relMSE 0.0025

(o) Reference
256K spp

(j) L1
relMSE 0.0102

(k) APR w/ L1
relMSE 0.0085

(n) APR w/ ours and G-buffers
relMSE 0.0018

(b) Texture

Figure 4: Denoising results with different features for Kitchen scene. Given the input image (a) generated by a uniform sampling, a recent
denoising method (i.e., APR) is tested with G-buffers ((b), (c), (d) and (e)), image gradients ((g) and (h)), L1 result (j), and our feature (l).
The G-buffers ((b), (c), (d) and (e)) capture only geometric edges, and thus APR with the G-buffers (f) fails to preserve the complex edges
(pointed by arrows). The gradients ((g) and (h)) contain a noisy but complete set of edges, but directly employing the gradients as features
leads to a completely over-blurred result (i). We also test the L1 image (j) as a feature of APR, but this shows a sub-optimal result (k) that
has a similar pattern of noise in the L1 (j). Our feature (l) estimates an ideal feature using the gradients ((g) and (h)), and makes APR to
produce more accurate results ((m) and (n)), by preserving the complex edges.

the APR for this test, in order to properly compare reconstruction
quality of APR given different features. APR with G-buffers pre-
serves the geometric edges that G-buffers have, but can fail to re-
construct more complex edges (e.g., glossy reflections). APR has a
functionality of increasing the order of local functions to better ap-
proximate the complex areas, but it is still challenging to properly
reconstruct those regions when input buffers are very noisy. Tech-
nically, this is mainly because high order functions have higher re-
construction variances, and APR tends to select low order functions
that minimize MSE (squared bias plus variance) for those areas.

In addition, we can directly utilize image gradients from G-PT
as features, and thus we pass the pre-filtered gradients into APR.
To pre-filter the noisy gradient, we utilize the non-local means
filter [RMZ13]. APR with image gradients shows a completely
over-blurred result, since correlation between the gradients and the
ground truth image can be low. Note that the ideal feature is not the
gradients of the ground truth image, but it is an image function that
has gradients equal to the gradient of the ground truth (described in
Sec. 3).

One may consider to use the L1 image computed by the screened
Poisson reconstruction as a feature of APR. We also test this image
as a feature within APR, but this shows sub-optimal results (e.g., a
similar pattern of noise in the L1 image), since the feature can have
a high correlation with the random error (i.e., εi in Eq. 1) of an in-
put image. Technically, removing the correlation completely is not
straightforward, since the L1 image is generated by the screened
Poisson reconstruction that utilizes the input image as a regular-

ization term for the reconstruction. On the other hand, our feature
allows for capturing the complex edges, and it leads to an improved
denoising result. Note that recent denoisers including APR are not
limited to a specific feature, and thus both our feature and G-buffers
can be naturally utilized in an adaptive framework and this combi-
nation leads to a further improvement.

Equal-time Comparisons. Fig. 5 shows same-time comparisons
of the tested methods. The original APR with G-buffers can be per-
formed without image gradients, so it does not require generating
offset light paths. As a result, for a fair comparison, we generate
the results of APR with G-buffers using a path tracing so that it can
use much more samples compared to the other methods including
our approach.

All the other methods including our method rely on image gradi-
ents, and thus these approaches use the gradient-domain path trac-
ing [KMA∗15], which has higher overhead due to the additional
processing for offset paths. The main goal of our approach is to
eliminate random noise for the gradient-domain renderer, and thus
we can limit the baseline renderer to the gradient-domain one for
all the tested methods. In this case, APR with G-buffers cannot use
the demonstrated sample count, as sampling time is bounded by a
given renderer. Nevertheless, we force the APR with G-buffers to
use a standard path tracer for fairness.

The L1 reconstruction preserves high-frequency edges well, but
leaves some high-frequency noise due to noisy image gradients.
APR with our feature image (APR with ours) shows a smoother
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(a) APR w/ 
ours and G-buffers 

56 spp (103.6 s) 
relMSE 0.0021

81 spp (105.5 s)
relMSE 0.0873

81 spp (106.0 s)
relMSE 0.0100

136 spp (104.6 s)
relMSE 0.0030

69 spp (104.2 s)
relMSE 0.0027

256K spp

(b) Input color of (c) (c) L1 (e) APR w/ G-buffers (f) APR w/ ours (h) Reference

56 spp (103.6 s) 
relMSE 0.0021

111 spp (187.5 s) 
relMSE 0.0018

150 spp (189.2 s)
relMSE 0.1715

150 spp (190.5 s)
relMSE 0.0181

253 spp (188.4 s)
relMSE 0.0036

129 spp (187.4 s)
relMSE 0.0026

512K spp111 spp (187.5 s) 
relMSE 0.0018

308 spp (482.7 s) 
relMSE 0.0016

372 spp (483.0 s)
relMSE 0.1260

372 spp (484.7 s)
relMSE 0.0069

696 spp (483.1 s)
relMSE 0.0017

344 spp (482.9 s)
relMSE 0.0033

512K spp308 spp (482.7 s) 
relMSE 0.0016

408 spp (466.0 s) 
relMSE 0.0018

512 spp (468.6 s)
relMSE 0.4087

512 spp (469.8 s)
relMSE 0.0284

1130 spp (468.8 s)
relMSE 0.0020

464 spp (467.4 s)
relMSE 0.0023

1024K spp408 spp (466.0 s) 
relMSE 0.0018

(g) APR w/ 
ours and G-buffers 

26 spp (106.8 s)
relMSE 0.0052

(d) Regularized L1

88 spp (189.3 s)
relMSE 0.0041

291 spp (483.8 s)
relMSE 0.0020

397 spp (468.8 s)
relMSE 0.0040

Figure 5: Equal-time comparisons. Given a gradient-domain path tracing (G-PT), our method generates a new feature image that is passed
into an adaptive rendering method (APR). Within the denoising framework, our feature can be used instead of using the G-buffers or together
with the G-buffers. The denoising results (g) of APR using both G-buffers and our feature show better numerical accuracy and visual quality,
compared to the previous L1 reconstruction (c), regularized L1 (d), and APR with G-buffers (e) that does not employ our feature.

image compared to L1, since we take account of noise (i.e., Eq. 7)
of the image gradients generated by G-PT. Note that both methods
do not utilize any geometric information, but our approach enables
high-quality image denoising by simply passing a feature image
into a recent adaptive method (e.g., APR).

In rendering, it is easy to capture G-buffers, which have been a
common characteristic of recent denoising methods. We thus addi-
tionally test APR that uses either G-buffers or combined features
(our feature and G-buffers). APR with only G-buffers preserves the
geometric edges that the buffers can contain well, but fails to prop-
erly denoise the non-geometric edges that the conventional features
cannot capture. However, when APR employs both features (G-
buffers and our feature), its results are improved by utilizing the
correlation between our features and ground truth images in places
(e.g., glossy reflections) where G-buffers fail to capture the corre-
lation.

Numerical Convergence. Fig. 6 shows relative MSE convergence
of tested methods across scenes. The errors of APR with our fea-
ture are significantly lower than ones of L1 results, and this result
indicates that our integrated solution of G-PT and an adaptive ren-
dering method (i.e., APR) is able to boost the performance of the

gradient-domain rendering framework even when G-buffers are not
exploited.

Regularized L1 reconstruction [MVZ16] shows the best results
(42 to 44% lower error than that of APR with ours and G-buffers)
with a small number of samples (i.e., 16 spp) for DOF-Kitchen and
Bathroom scenes, but produces the worst result (5× higher error
than that of our approach) for Door scene where input gradients are
extremely noisy. On the other hand, our solution, APR with ours
and G-buffers, consistently produces good numerical results across
scenes even for Door scene, as our process robustly generates a fea-
ture while reducing noise in estimated gradients. In addition, the
computational overhead of the prior is fairly large (e.g., 1 minute),
compared to that of APR with ours and G-buffers (8.2 secs). As a
result, for the DOF-Kitchen and Bathroom scenes, our method pro-
duces more accurate numerical results (relMSE 0.0023 and 0.0072
with 51 spp) than those (relMSE 0.0080 and 0.0239 with 16 spp)
of the regularized solution, given an equal-time.

APR with only G-buffers produces relatively good numerical re-
sults for Bathroom and Door scenes where the features can pre-
dict most of high-frequency information well. However, the per-
formance gain guided by G-buffers diminishes for DOF-Kitchen
and Kitchen scenes where non-geometric information (e.g., glossy
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Figure 6: Relative MSE convergence of the tested methods for
DOF-Kitchen, Kitchen, Bathroom, and Door scenes. Except for
the small number of samples (i.e., 16 spp), APR with ours and G-
buffers shows better results than other methods numerically.

reflections) is a dominant factor. APR with only our feature outper-
forms APR with G-buffers for the scenes from 32 spp, as our new
feature can help to predict the edge information that G-buffers can-
not contain. Overall, APR with both features (ours and G-buffers)
shows better results compared to the others for all scenes except a
very small number of samples (e.g., 16 spp). As a result, our feature
makes a recent adaptive method to be successfully integrated into
the gradient-domain rendering framework, by passing an estimated
optimal feature into the local regression based adaptive method.

Animated Sequences. Temporal coherence between input frames
is typically employed by a recent adaptive method, which performs
a final reconstruction on 3D volumes by extending a 2D denois-
ing window to a 3D one [MMMG16]. In addition, we extend the
non-local means pre-filtering [RMZ13] into a 3D one (e.g., five ad-
jacent frames) to further reduce the remaining noise in our feature
by increasing the chance of finding similar patches. Accompa-
nied videos show input colors, our features, and final reconstruc-
tion results by APR that utilizes both features (i.e., our feature and
G-buffers). Flickering artifacts are still noticeable on final images,
especially when light densities are low (e.g., shadows), but the fi-
nal sequences have much reduced flickering compared to the input,
while preserving detailed high-frequency information thanks to our
feature.

Computational Overhead. The main computational bottleneck of
our method is the bagging process that performs multiple iterations
(e.g., ten times) of WLS, and the computational time for gener-
ating our feature image and its variance is 1.3 seconds given the
tested image resolution. Also, the time of the non-local means pre-
filtering is 0.2 seconds. These computational times are mostly con-
stant in terms of the number of samples as we use a fixed number of

(d) APR w/ G-buffers
(Equal spp)

(e) APR w/ ours
and G-buffers

(f) Reference

90 spp (117.3s) 
relMSE 0.0436

32 spp (117.1s)
relMSE 0.0124

152 spp (116.6s)
relMSE 0.0043

64 spp (57.4s) 
relMSE 0.0076

64 spp (116.6s)
relMSE 0.0057

512K spp

(a) L1 (b) Regularized L1 (c) APR w/ G-buffers

Figure 7: Failure case for the Bathroom scene where most of edges
can be captured by G-buffers. Given an equal-time, our method (e)
shows better denoising results, compared to the other methods (L1
(a), regularized L1 (b)) that utilize a gradient-domain path tracer.
However, APR with G-buffers produces higher reconstruction qual-
ity than ours, as this previous approach employs a standard path
tracer that has much lower overhead than the gradient-domain ren-
dering system. Nevertheless, our approach (APR with our feature
and G-buffers) is able to show similar performance given a large
number of samples (see Fig. 5) for the equal-time, as the rate of er-
ror convergence can be improved when our feature is included (see
Fig. 6).

bins (Sec. 5). These overheads are not ignorable, but are small por-
tions of total rendering times (e.g., more than one minute in Fig. 5).
As a result, given the equal-time comparisons, our method shows
higher quality over the tested prior methods.

Limitations. The main limitation of our method is that our fea-
ture image may miss some high-frequency edges, which G-buffers
can contain, especially when image gradients are very noisy. Fig. 7
shows this scenario where noisy gradients do not provide enough
information on high-frequency edges. Our feature can still improve
the denoising output of APR, when ours is included into their
method as an additional feature. Since the convergence rate of our
method (APR with both features) is faster than that of APR with
G-buffers (shown in Fig. 6), our method shows similar or better
results for an equal-time comparison (Fig. 5) given a large num-
ber of samples. However, with a relatively small number of sam-
ples, APR with G-buffers can outperform our approach where most
of high-frequency information can be predicted by G-buffers (e.g.,
Bathroom scene). Nonetheless, our method shows the most robust
performance across different scenes, as we aim at estimating the
ideal feature that contains all high-frequency information (not just
geometry edges).
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7. Conclusion

In this paper, we have presented an integrated solution that adap-
tively performs a feature-based reconstruction and sampling within
the G-PT framework. This novel integration is achieved seamlessly
by feeding a feature image into an existing adaptive rendering
method. This high-level approach is technically implemented by
deriving an ideal feature in the form of image gradients so that the
feature can be reconstructed by a Poisson reconstruction. In addi-
tion, we have proposed a robust feature estimation process includ-
ing a weighted least squares and bagging, in order to take account
of heterogeneous noise in the input image gradients from G-PT.
Our method has shown a drastic error reduction even without ex-
ploiting the most common feature (i.e., G-buffers), compared to
existing reconstruction for G-PT (i.e., L1).

Interesting research directions lie ahead. A direction is to esti-
mate the ideal feature more robustly when we use a small number
of samples and the input gradients are extremely noisy. Practically,
this should be addressed for a fast preview of pre-rendering results.
Additionally, we have shown that our simple extension to the ani-
mation works reasonably well, but to further reduce flickering we
would like to test our method within the temporal gradient-domain
framework [MKD∗16] and investigate features tailored for such ap-
proach.
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