
1

RACBVHs: Random-Accessible Compressed
Bounding Volume Hierarchies

Tae-Joon Kim, Bochang Moon, Duksu Kim, Sung-Eui Yoon, Member, IEEE

Abstract —We present a novel compressed bounding volume hierarchy (BVH) representation, random-accessible compressed
bounding volume hierarchies (RACBVHs), for various applications requiring random access on BVHs of massive models. Our RACBVH
representation is compact and transparently supports random access on the compressed BVHs without decompressing the whole BVH.
To support random access on our compressed BVHs, we decompose a BVH into a set of clusters. Each cluster contains consecutive
bounding volume (BV) nodes in the original layout of the BVH. Also, each cluster is compressed separately from other clusters and
serves as an access point to the RACBVH representation. We provide the general BVH access API to transparently access our
RACBVH representation. At runtime, our decompression framework is guaranteed to provide correct BV nodes without decompressing
the whole BVH. Also, our method is extended to support parallel random access that can utilize the multi-core CPU architecture. Our
method can achieve up to a 12:1 compression ratio and, more importantly, can decompress 4.2M BV nodes (= 135 MB) per second
by using a single CPU-core. To highlight the bene�ts of our approach, we apply our method to two different applications: ray tracing
and collision detection. We can improve the runtime performance by more than a factor of 4 as compared to using the uncompressed
original data. This improvement is a result of the fast decompression performance and reduced data access time by selectively fetching
and decompressing small regions of the compressed BVHs requested by applications.

Index Terms —Hierarchy and BVH compression, random access, cache-coherent layouts, ray tracing, collision detection.

F

1 INTRODUCTION

BOUNDING volume hierarchies (BVHs) are widely
used to accelerate the performance of various ge-

ometric and graphics applications. These applications
include ray tracing, collision detection, visibility queries,
dynamic simulation, and motion planning. These appli-
cations typically precompute BVHs of input models and
traverse the BVHs at runtime in order to perform inter-
section or culling tests. Many different types of bounding
volume (BV) representations exist such as spheres, axis-
aligned bounding boxes (AABBs) and, oriented bound-
ing boxes (OBBs).

A major problem with using BVHs is that BVHs
require large amounts of the memory space. For exam-
ple, each AABB and OBB node takes 32 and 64 bytes
respectively. Therefore, BVHs of large models consisting
of hundreds of millions of triangles can take tens of
gigabytes of space. Moreover, the typical data access pat-
tern on BVHs cannot be determined at the preprocessing
time and is random at runtime. Therefore, accessing
BVHs at runtime can have low I/O ef�ciency and cache
utilization.

An aggravating trend is that the growth rate of the
data access speed is signi�cantly slower than that of
the processing speed [1]. Therefore, the problem of high
storage requirements and low I/O ef�ciency/cache uti-
lization of BVHs will become more pronounced in the
future.

Several approaches have been developed to address
this problem. One class of methods uses compact in-
core BV representations by using quantized BV infor-

All the authors are with KAIST (Korea Advanced Institute of Science and
Technology).

mation or by exploiting the connectivity information of
an original mesh and coupling the mesh and the BVH.
Another class of methods stores BV nodes in a cache-
coherent manner to improve cache utilization and, thus,
improve the performance of traversing BVHs. However,
due to the widening gap between data access speeds and
processing speeds, prior work may not provide enough
reduction in storage requirements nor achieve high I/O
ef�ciency during the BVH traversal.

Main results: In this paper, we present a novel compact
BVH representation, random-accessible compressed BVHs
(RACBVHs), for various applications requiring random
access on BVHs of massive models. We present a cluster-
based layout-preserving BVH compression and decom-
pression method supporting transparent random access
on the compressed BVHs. We compress BVs of a BVH by
sequentially accessing BVs in the BV layout of the BVH.
During the compression, we decompose consecutive BVs
into a set of clusters, each of which will serve as an
access point for random access at runtime (Sec. 4). Our
compression method preserves the original layout of a
BVH and, thus, maintains high-cache utilization during
the BVH traversal if the original layout maintains high
cache-coherence. In order to allow various applications
to transparently access the compressed BVHs, we pro-
vide a general BVH access API (Sec. 5). Given a BV node
requested by the API, our runtime decompression frame-
work ef�ciently identi�es, fetches, and decompresses a
cluster containing the data into an in-core representation
that can ef�ciently support random access. Also, our
method is easily extended to support parallel random
access that can exploit the widely available multi-core
CPU architecture. To demonstrate the bene�ts of our

2

(a) St. Matthew scene (b) Iso-surface model (c) Lucy and CAD turbine models

Fig. 1. The left and middle images show results of ray tracing using our random-accessible compressed bounding
volume hierarchies (RACBVHs) of St. Matthew model consisting of 128 M triangles and an iso-surface model
consisting of 102 M triangles. The right image shows a frame during a rigid-body simulation using collision detection
between two models including the Lucy model consisting of 28 M triangles. By using RACBVHs, we can reduce the
storage requirement by a factor of 10:1 and, more importantly, improve the performance of ray tracing and collision
detection by more than a factor of four over using uncompressed data.

method, we implement two different applications, ray
tracing and collision detection, by using our BVH access
API (Sec. 6).

Overall, our approach has the following bene�ts:
1) Wide applicability: The provided BVH access API

allows various applications to transparently access
the compressed BVHs. Moreover, our BVH access
API supports random access and does not restrict
the access pattern of BVH-based applications. As
a result, existing BVH-applications can be easily
modi�ed to take advantage of the bene�ts of our
RACBVH representation.

2) Low storage requirement: Our RACBVH rep-
resentation has up to a 12:1 compression ratio
compared to an uncompressed BV representa-
tion. Also, we use random-accessible compressed
meshes (RACMs) and achieve a similar compres-
sion ratio for the compressed meshes.

3) Improved performance: Our decompression
method is fast and processes 4.3 M nodes per
second by using a single CPU-core. Also, by
selectively fetching and decompressing the
small regions of the compressed BVHs and meshes
requested by applications, we can reduce expensive
data access time. As a result, we can achieve more
than a 4:1 performance improvement on our tested
applications over using uncompressed BVHs and
meshes.

Finally, we analyze our method and provide comparison
over prior methods in Sec. 7.

2 RELATED WORK

In this section, we review prior work related to BVHs
and compression methods supporting random access on
the compressed data.

2.1 Bounding Volume Hierarchies

BVHs have been widely used as an acceleration data
structure for ray tracing [2], visibility culling, and prox-
imity computations [3], [4]. There are different types
of bounding volumes (BVs). Most commonly used BV
types are simple shapes such as spheres [5] and axis-
aligned bounding boxes (AABBs) [6], or tighter-�tting
BVs such as oriented bounding boxes (OBBs) [7], and
discretely oriented polytopes (k-DOPs) [8], etc. Many
top-down and bottom-up techniques have been pro-
posed to construct these BVHs [3], [4], [9]. AABBs and
spheres are used especially widely due to the simplicity
and compactness [4].

2.2 Mesh Compression

In the �elds of computer graphics and visualization,
mesh compression techniques have been well stud-
ied over the last decade and excellent surveys are
available [10], [11]. Most previous mesh compression
schemes were designed to achieve a maximum com-
pression ratio as they were designed for archival use or
for transmission of massive models [12], [13], [14]. They
achieved this goal by encoding vertices [12], [15], [16],
edges [17], and faces [18], [19], [20] in a particular order
agreed upon by the encoder and decoder.

2.3 Compression and Random Access

Most prior mesh compression techniques do not di-
rectly provide random access to the compressed meshes.
Typically, in order to access a particular mesh element
such as vertex, the whole compressed mesh must be
sequentially decompressed to an uncompressed format
that can support random access. In this section, we

3

will focus on various compression techniques supporting
random access on the compressed data.

Single or multi-resolution mesh compression: Choe et
al. [21], [22] proposed a single-resolution mesh compres-
sion method that supports selective rendering. Recently,
Yoon and Lindstrom [23] proposed random-accessible
compressed meshes for general applications requiring
random mesh access. This method achieves up to a
20:1 compression ratio and improves the runtime per-
formance of iso-contouring and layout re-computation.
Several multi-resolution compression methods also sup-
port random access. Gobbetti et al. [24] proposed a com-
pressed adaptive mesh representation of regular grids
for terrain rendering. Also, Kim et al. [25] introduced a
multi-resolution compression method for selective ren-
dering.

Multimedia and regular grids: Random access is one
of the key components of the MPEG video compression
format that allows users to browse video in a non-
sequential fashion [26]. Particularly, the MPEG video
codec method periodically inserts “intra pictures” as
access points in the compressed scheme. Such intra
pictures are compressed without using information from
other frames. Then, subsequent frames are compressed
by predicting the motion in between these intra pictures.
For regular volumetric grids, wavelet-based compression
methods [27], [28] that support random access have been
proposed. Also, Lefebvre and Hoppe proposed a perfect
spatial hashing method as an ef�cient random-accessible
compressed image format [29].

2.4 Tree and BVH Compression

Tree compression has been studied in many different
�elds [30]. These techniques include compressing the
tree structure by linearizing the structure [31] and trans-
forming the tree into a pre-de�ned tree [32]. However,
these compressed trees do not support random access
and do not preserve the layouts of the trees. There are
relatively few research efforts on compressing BVHs. A
BVH has two main components: BV information and
indices to child nodes.

Encoding bounding volumes: In order to compress the
bounding volume information, �xed-rate quantization
methods [33] are frequently used [34], [35], [36] , as
applied to compress geometry of meshes [10]. Also,
hierarchical encoding schemes were developed to further
achieve a higher compression ratio and improve the
compression quality [37], [38] by performing quanti-
zation of the bounding volume of a node within the
region of the bounding volume of its parent node. These
methods can support fast decoding and random access
on the quantized bounding volume information. We also
employ a hierarchical quantization method. We further
improve the compression ratio by using a simple pre-
diction model and dictionary-based compression meth-

ods [39] while supporting fast random access.

Encoding tree structures: Many techniques assume a
particular tree structure (e.g., complete tree) in order to
completely remove any cost related to encoding the tree
structure [34], [40]. Recently, Lauterbach et al. [40], [41]
introduced a Ray-Strip representation, which implicitly
encodes a complete spatial kd-tree from a series of ver-
tices. These techniques do not use any bit for encoding
the tree structures. Lefebvre and Hoppe [42] employed
local offsets to encode the location of child nodes given
the pre-ordered layout of the tree. All of these techniques
support random access on the compressed meshes, but
assume a particular tree structure or a layout for the
tree. Therefore, these methods may not be compatible
with various hierarchy construction methods [9], [43],
[4] optimized to achieve the high culling ef�ciency of
BVHs.

3 OVERVIEW

In this section, we discuss issues that arise when using
BVHs of massive models and give a brief overview of
our approach to ef�ciently handle them.

3.1 BVHs of Massive Models

BVHs are widely used to accelerate the performance of
intersection or culling tests in various applications. The
leaf nodes of a BVH contain triangles of the original
model. Each intermediate node of a BVH contains the
BV information that encloses all the triangles located
under the sub-tree rooted at the intermediate node. In
this paper, we use the AABB and a binary BVH due
to its simplicity and the wide acceptance in various
applications [4], [44].

High storage requirement: The storage requirement of
BVHs can be very high for massive models consisting of
hundreds of millions of triangles. For example, a simple
AABB node representation has the following structure:

s t r u c t AABB f
s t r u c t BV f

Vector3f Min , Max ;
g; // bounding volume informat ion .
s t r u c t TreeSt ruc tu re f

Index Left , Right ;
g; // i nd i ces fo r ch i l d nodes .

g;

Listing 1. AABB Node Representation

The Min and Max variables store the minimum and
maximum extents of the AABB in the x, y, and z di-
mensions. Also, the Left and Right variables store the
indices of child nodes in the case of intermediate nodes.
Typically, a BVH is constructed until each leaf node has
only one triangle. For the rest of the paper, we assume
that each leaf node of a BVH contains only one triangle
and explain our method with this assumption. Later, we
extend our method to support multiple triangles in leaf
nodes in Sec. 7. In the case that leaf nodes contain only
one triangle, the Left and Right variables of a leaf node

4

store a triangle index of the triangle and a null index
respectively.

This AABB structure requires 32 bytes per node. A
model consisting of 100 million triangles requires about
6.4 GB of the main memory. Therefore, BVHs of massive
models may not be loaded into the main memory and
be accessed from the disk or through the network.

Random access pattern: Traversal on BVHs shows ran-
dom access pattern for applications including ray tracing
and collision detection. These applications typically take
two inputs: two 3D objects for collision detection and
one 3D object and a ray for ray tracing. The algorithm
traverses BVHs of objects in the depth-�rst or breadth-
�rst order as long as an intersection is detected between
two inputs. In general, it is hard to predict the runtime
access pattern on BVHs at the preprocessing time or to
optimize the access pattern at runtime. The data access
time is often the main bottleneck of many applications
that use BVHs of massive models.

Cache coherence: There have been several research
efforts toward designing cache-coherent algorithms by
reordering the runtime access patterns [45], [46] or by
reordering the underlying data layout [47], [48]. These
techniques reduce the number of expensive cache misses
during random access on the data, since cache misses
in various memory levels (e.g., L1/L2, main memory,
and disk) are signi�cantly expensive compared to the
computation time [1].

Out-of-core techniques: Out-of-core techniques have
been widely studied in order to handle massive models
that cannot �t into the main memory [49]. These tech-
niques aim at reducing expensive data access operations
when dealing with massive models by only loading
necessary data and performing local operations. How-
ever, due to the widening gap between data processing
speeds and data access speeds [1], the time spent even
on loading only the necessary data from the disk can be
very expensive.

3.2 Our Approach

In order to ef�ciently access BVHs and improve the
performance of various applications using BVHs, we
propose a novel BVH compression and decompression
method supporting random access. Our method has two
main components: (1) a cluster-based layout preserving
BVH compression and (2) a runtime decompression
framework that transparently supports random access
on the RACBVH representation without decompressing
the whole BVH.

Cluster-based layout preserving BVH compression: We
compress BVs of a BVH by sequentially reading BVs in
the BV layout of the BVH. We choose our compression
method to preserve the original layout of the BVH
in order to achieve the high cache utilization which
the original layouts may maintain. We decompose the
original layout of the BVH into a set of clusters. We
assign consecutive BVs in the BV layout to each cluster

n7 n8 n9

Layout

Local roots

Local leaves

n8

n9

n11 n12

n10

n13

n14 n15

ClusterC0 ClusterC1

ClusterC1

Fig. 2. Clusters from a BV layout: This �gure shows a BV
layout on the left and a computed cluster, C1 , on the right. Red arrows
indicate the BV layout of the BVH.

and set each cluster to have the same number (e.g., 4K)
of BVs to quickly identify a cluster containing a BV node
requested by an application at runtime. We compress
each cluster separately from other clusters so that the
clusters can be decompressed in any order.

Runtime BVH access framework: We de�ne an atomic
BVH access API supporting transparent and random
access on the compressed BVHs. Our runtime BVH
access framework �rst identi�es a cluster containing a
BV node requested by an application. Then, the runtime
framework fetches and decompresses the cluster into an
in-core representation. Based on our in-core represen-
tation, we can very ef�ciently support random access
to applications. Our runtime BVH access framework is
guaranteed to return the correct BV information of the
requested data when applications access the compressed
data via our BVH access API. We employ a simple mem-
ory management method based on a least recently used
(LRU) replacement policy in order to handle massive
models and their BVHs that cannot �t into the main
memory.

4 COMPRESSION

In this section, we will explain our cluster-based layout
preserving BVH compression method.

4.1 Layout Preserving BVH Compression

Our compression method sequentially reads and com-
presses BV nodes given in the format of Listing 1. As we
read each BV node in the BV layout, we assign the BV
node into a cluster. For clustering, we simply decompose
consecutive BV nodes into a cluster, where each cluster
has power-of-two nodes (e.g., 4K nodes). An index of
a BV node increases sequentially as we compress each
node. Then each BV node index can be encoded as a
pair of indices, (Ci ; l i), where Ci is a cluster index to
a cluster that the node is assigned to and l i is a local
index of the node within the cluster. Let us call the pair
of indices a pair index. The pair index is also used in
an earlier method of compressing massive meshes [50].
Note that each cluster may have one or multiple sub-
trees (see Fig. 2). We call the root nodes of these sub-trees
contained in a cluster local rootsof the cluster. We also
de�ne local leaf nodesto denote leaf nodes of these sub-
trees within each cluster. We de�ne P arent(n) to be a
parent node of a node n. Also, parent clustersof a cluster
c are de�ned to be clusters containing parent nodes of

5

n2 n3 n4 n5Front

: Not yet compressed nodes

: Compressed nodes
n4

n1

n0

n2

n3

n5

n12

n14n13

n9

n11n10n8n7n6

Fig. 3. A Front during Compression: This �gure shows a
front of a sub-tree during compression. We use the front to compactly
encode the tree structure of BVHs.

local roots of the cluster c. Similarly, we can de�ne child
clustersof a cluster.

For a new cluster, we initialize all the compression
contexts. Therefore, each cluster can be decompressed
in any order at runtime although we compress each
cluster sequentially during the preprocessing time. We
also de�ne a front for a sub-tree located under each local
root of a cluster during compression (see Fig. 3). As we
compress each node, we add the node to the front and
connect the node to its parent node, if the parent node is
in the front. Once a node in the front is connected to its
two child nodes, the node is deleted from the front. As
a result, the front consists of BV nodes that are not yet
connected to its two child BV nodes during compressing
the cluster. We will use the front in order to compactly
encode the tree structures of BVHs.

It is desirable that constructed clusters should contain
BV nodes that are likely to be accessed together during
the traversal of BVHs. Otherwise, we may have to load
and decompress many clusters, which could lower the
performance of applications. Since clusters are implicitly
computed from original layouts of BVHs, BV nodes that
are likely to be accessed together should be stored very
closely in the layout of a BVH. Fortunately, there are
a few layouts that satisfy this property. These layouts
include the cache-ef�cient layouts of BVHs [48] and
the van Emde Boas layout [47]. An example of clusters
computed from different layouts is shown in Fig. 4. We
will compare the performance of different layouts in
Sec. 7.

We also propose using a dictionary-based compressor
and decompressor [39] to achieve a high compression
ratio and, more importantly, a fast decompression perfor-
mance for ef�cient random access on our RACBVH rep-
resentation. A pseudo-code of our compression method
is given in Algorithm 1, for the clarity of explaining our
method.

4.2 Encoding Bounding Volumes

The Min and Max variables of the BV node representa-
tion (Listing 1) store the minimum and maximum extents
of an AABB node. We �rst quantize each component, i.e.,
x, y, and z, of the Min and Max of each BV node. We use
a �xed-rate quantized method [33] for those components
based on the root bounding volume of a BVH. We quan-
tize the components conservatively to ensure that the
quantized BV still encloses all the triangles of the original
BV. Then we further compress the quantized Min and
Max values based on the BV information of P arent(n)

0

1

2

3 4 6 7

5

8

9

10 11

12

13 14

Clusters Clusters

Depth-�rst layout Cache-e�cient layout

0

1

3

5 6

4

7 8

2

9 12

10 11 13 14

Fig. 4. Clustering with Different BV Layouts: This
�gure illustrates different layouts of a BVH and constructed clusters
by assigning the �xed number (e.g., 3) of consecutive BV nodes into
clusters.

of the node n currently being encoded. To do that, we
predict two child BVs of P arent(n) given the BV of
P arent(n). Then we only encode the difference between
the predicted and actual BVs using our dictionary-based
encoder. For the prediction, we partition the parent BV
into two child BVs by dividing the longest axis of the
BV into half. We �nd that this simple median prediction
methodworks well in our tested benchmarks.

It is possible that a cluster containing a parent node
P arent(n) of a node n may be different from a cluster
containing the node n. In this case, we cannot assume
that the BV information of the P arent(n) is available
when decompressing the node n. Our runtime frame-
work addresses this problem by guaranteeing the exis-
tence of the P arent(n) by loading the cluster containing
the P arent(n). This will be discussed more in Sec. 5.

4.3 Encoding Tree Structures

The Left and Right of intermediate BV nodes (Listing 1)
contain two child indices and represent the tree struc-
ture. However, the Left of a leaf node has a triangle
index contained in the leaf node. We will describe our
compression method for child indices of intermediate
nodes and, next, for triangle indices of leaf nodes in the
next two sections.

4.3.1 Encoding Child Indices

Initially, we attempted to directly encode child indices of
the Left and Right . However, we found this approach
shows poor compression results. This is mainly caused
by the fact that there are many factors (e.g., layout types
and tree structures) affecting child indices of a node and
it is dif�cult to account for these factors when predicting
child indices. Instead of encoding child indices given a
node, we propose to encode a parent node index from
a node n currently being encoded. The main rationale
behind this design choice is that the tree structure above
the node n is available at the time of encoding or decod-
ing the node n. Therefore, encoding a parent node index
is simply choosing a node from the already encoded tree
structure instead of predicting a tree structure below the
node n.

Note that either the Left or Right index of a parent
node P arent(n) is equal to the node index nidx of the
node n. Therefore, if we encode a parent node index
of the node n, then, we can access its parent node
P arent(n) and �ll either the Left or Right indices of

6

P arent(n) with the node index nidx when we decom-
press the node n. To indicate whether the node n is the
left or right child of its parent, we encode an additional
bit.

Our BV node does not directly store any information
about its parent node index. Fortunately, this information
can easily be constructed during compression. To do this,
we maintain a hash table. For a node n speci�ed by a
node index nidx , our BV representation gives us indices
of two child nodes, Left and Right , of the node n. We
simply construct two hash map elements connecting a
key of each child index to nidx of the node n.

As we encode each node n, we attempt to �nd its
parent node index by querying its node index nidx to the
hash table. If we can �nd the node index nidx and, thus,
its parent node index from the hash table, then we can
�nd the parent node P arent(n) speci�ed by the parent
node index among nodes stored in the front according
to the de�nition of the front described in Sec. 4.1. For
example, when we encode a node of n6 in the example
of Fig. 3, we �rst attempt to �nd its parent node n3 using
the hash table by querying the node n6. Since the hash
map element that connects n6 to n3, is already inserted
when n3 is encoded, we can �nd its parent node n3. Also,
the node n3 is the second element in the front. Therefore,
we encode 2. Then we insert n6 to the front and remove
n3 from the front since the node n3 is connected to its
two child nodes. Finally, we add two hash map elements
that connect two child nodes of n6 to the node n6.

Note that the number of nodes stored in the front is
typically much smaller than the number of nodes in the
BVH. Therefore, we can compactly encode the parent
node index by encoding its position in the front. The
average size of the front with the cache-ef�cient layouts
is 13 when we assign 4 K nodes for each cluster in our
tested models. We can compute the position of the parent
node in the front and update the front in a constant time
by using a dynamic vector for nodes in the front.

If the node n currently being encoded is the root node
of the BVH or a local root of a cluster that the node n is
assigned to, then we cannot �nd its parent node index
by querying a node index nidx to the hash table. The case
of the root node can easily be identi�ed and addressed.
In the case of local roots of a cluster, the parent nodes of
those local roots are located in another cluster. Therefore,
the front of the cluster that is currently being encoded
does not have any information about the parent nodes of
the local roots while the cluster is being compressed. One
naive solution is to directly store the parent node index,
which requires storing many bits. Instead, we encode
the parent node index by decomposing it into a pair
index of (Ci ; l i). Then we encode Ci among the parent
clusters of the cluster that is currently being encoded
and, then, encode l i . We found that this method gives
a high compression ratio since the number of parent
clusters is typically very small (e.g., 2 on average for
cache-ef�cient layouts).

Local leaf nodes: Given our compression scheme, we

Algorithm 1 Encode(N)
Require: A node index N

Index P == Parent node index of N
if N =2 Hash , the hash table then

== N is a local root
Encode(0)
Assign and encode N 's parent node to P

else
== N is not a local root
P Hash:F ind (N)
int k F ront:GetOf fset (P)
Encode(k + 1)

end if

Update F ront and Hash .

== Quantize and encode the BV of the N
QBV pQBV Quantize (GetBV (P))
QBV nQBV Quantize (GetBV (N))
QBV predQBV P redict (pQBV)
Encode(diff. between predQBV and nQBV)

if N is a leaf node then
== Encode triangle indices
Index triIdx GetT riIdx (N)
Encode(triIdx � lastT riIdx)
lastT riIdx triIdx

else if N is a local leaf then
== Encode child indices
Index lef tIdx GetLef tChildIdx (N)
Index rightIdx GetRightChildIdx (N)
Encode(lef tIdx � lastChildIdx)
Encode(rightIdx � lef tIdx)
lastChildIdx rightIdx

end if

cannot compute the child indices of local leaf nodes
of a cluster without decompressing its child clusters
at runtime. This is because these child indices of local
leaf nodes will be computed when processing child
clusters containing the child nodes speci�ed by the child
indices. However, loading the child clusters of a cluster
at runtime can signi�cantly increase the working set size
of applications and, thus, decrease the performance of
applications. To avoid this problem, we directly encode
left and right child indices stored in Left and Right only
for local leaf nodes. To compactly encode left and right
child indices of local leaf nodes, we employ a simple
delta encoding. Given a child index that we are going
to encode, we compute the difference between the index
and a previously encoded index. Then we encode the
difference using our dictionary-based encoder.

4.3.2 Encoding Triangle Indices

The Left index of a leaf node contains a triangle index.
Since a BVH is constructed by spatially partitioning the
triangles of a mesh, triangles stored in neighboring leaf
nodes are highly likely to be spatially close and may
even share edges between them. We use this observa-
tion to design two different compression methods that
explicitly or implicitly exploit the connectivity of a mesh
between leaf nodes.

Explicit utilization of the mesh connectivity: Our �rst
method explicitly uses the underlying mesh connectivity.
We encode triangle indices when we encounter leaf

7

nodes while sequentially accessing BV nodes in the BV
layout. For each encoded triangle index of a triangle,
we compute three indices of its three neighboring tri-
angles and store them in a cache. Then for a triangle
index of a next leaf node, we attempt to encode the
triangle index among three triangle indices stored in the
cache. Otherwise, we encode the triangle index. We
found that this method works well and about half of
triangles indices of leaf nodes can be encoded by the
small cache holding three previous neighboring triangle
indices. However, one downside of this approach is
that, to compute each triangle's neighbors, the mesh
connectivity must be constructed during decompression,
which is inef�cient at runtime.
Implicit utilization of the mesh connectivity: In order to
support ef�cient decompression and high compression
ratio, we propose to use a simple delta coding method.
We found that the difference between the previous and
the current triangle indices is typically small when
layouts of a BVH and a mesh have high coherence.
Therefore, we encode the triangle index difference with
our dictionary-based encoder if the difference is less than
a small threshold (e.g., 10). We found that about 80% of
the differences are within the threshold of 10 when using
cache-ef�cient layouts. Otherwise, we encode the trian-
gle index. This compression method implicitly utilizes
the underlying layouts of both BVHs and meshes having
the high spatial coherence between neighboring nodes
and triangles. As a result, this implicit method requires
fewer bits per node (bpn) and decompresses much more
quickly.
Meta �le: In order to support random access on the
compressed BVH at runtime, we construct a meta �le as
we compress a BVH. The meta �le has a starting address
of each cluster in the compressed BVH and the number
of BV nodes assigned to each cluster. Since the meta
�le takes only minor memory space (e.g., less than one
MB), we store the meta �le without any compression.
Note that this meta �le is constructed progressively as
we compress a BVH in one pass.

4.4 Dictionary-based Compression

We employ one more layer of compressing the data
by using a dictionary-based compressor to improve the
compression ratio while achieving high decompression
performance. Particularly, we use variations of the LZW
method [39, pages 199–208] based on a simple dictionary.
We choose the LZW method since it can quickly detect
and compress repeating patterns in the sequences of
symbols. For each different compression context, we
initialize dictionary entries with all the symbols that the
compression context can have. Then we allow adding a
new entry consisting of a combination of symbols if the
entry is not in the dictionary.

For the compression contexts of the delta encoding
and the difference encoding for the quantized BVs, we
further optimize our LZW method since these compres-
sion contexts show different characteristics compared to

Fig. 5. Hubo and Power Plant Models: The Hubo robot
model (16 K triangles) is placed in the upper left corner of the power
plant model (13 M triangles). The entire power plant model is shown on
the right. We improve the performance by a factor of 2:1 for collision
detection using our RACBVH representation.

other contexts. In these compression contexts, we do
not initialize the dictionary with symbols and start with
an empty dictionary since there are too many possible
symbols and we found that most of those symbols do
not appear during compressing a cluster. We add a new
symbol if we encounter the symbol during compression.
However, we do not add new entries consisting of a
combination of symbols since we found that there are not
many repeating patterns in these compression contexts.

4.5 Random-Accessible Compressed Meshes
(RACMs)

We employ the RACM representation [23] to further
reduce the storage requirement of meshes, which are
used together with BVHs for various applications. We
use OpenRACM library [51] available online for comput-
ing RACMs and employ the provided mesh access API
to access the compressed meshes. The original RACM
method used the arithmetic encoder [52] to achieve a
high compression ratio. We found that our dictionary-
based encoder shows much higher runtime performance
than the arithmetic encoder. Therefore, we modify the
RACM method to use our dictionary-based method.
We will provide more detail comparisons between our
dictionary-based encoder and the arithmetic encoder in
Sec. 7.2.

5 RUNTIME DECOMPRESSION FRAMEWORK

In this section, we present our runtime decompression
framework that transparently supports random access
on our RACBVH representation.
In-core BV representation: As we decompress BV nodes
requested by applications, we store the decompressed
BVs in the main memory in the format of the simple
BV representation shown in Listing 1. The main bene�t
of using this in-core BV representation is that it can di-
rectly support random access without any computation
overhead.

5.1 BVH Access API

In order to allow various applications to transparently
access our RACBVHs, we provide the following BVH
access functions:

8

Index GetRootIndex (void): Return an index of the
root node of a BVH.
BV & GetBV (Index nidx): Return the BV information
speci�ed by the node index nidx .
bool IsLeaf (Index nidx): Return whether a BV node
speci�ed by the node index nidx is a leaf.
Index GetLeftChildIdx (Index nidx): Return an index
of the left child node of a BV node speci�ed by the
node index nidx . We also de�ne a similar function for
the right child.
Index GetTriangleIdx (Index nidx): Return a triangle
index stored at the leaf node speci�ed by the node
index nidx .

Based on this BVH access API, we can traverse a BVH
in a hierarchical manner or access any BV nodes in an
arbitrary order. Also, we can support more advanced
BVH access methods like front-based traversal [53] or
hierarchy traversal from an arbitrary entry point [54],
based on these atomic BVH access API.

5.2 Runtime BVH Access Framework

Our runtime data access framework �rst reads the meta
�le. Suppose that an application requests a BV node
by calling the GetBV (�) function. Then, the runtime
data access framework identi�es a cluster containing
the requested data, decompresses it into our in-core BV
representation, and returns the data to the application.
Since clusters have consecutive power-of-two BV nodes,
we can compute a cluster index by performing a few bit
operations to a given node index. Once a cluster index is
computed, we refer to the meta �le to acquire a starting
address of the cluster on the compressed BVH and, then,
we decompress the cluster.

Decompressing a cluster: The process of decompressing
a cluster is symmetric to the process of compressing it.
As we read the compressed data of a cluster, we recon-
struct the tree structures represented by the Left and
Right indices and the BV information. The tree structure
is reconstructed without extracting any information from
other clusters. On the other hand, the BV information of
a node is reconstructed by extracting the BV information
from its parent node given our hierarchical BV compres-
sion method. For the local roots of a cluster, we cannot
reconstruct the BV information of these local roots and
their sub-trees if the BV information of parent nodes of
these local roots is not available while decompressing the
cluster. We call these nodes that we cannot reconstruct
the BV information at the time of decompressing the
cluster incomplete nodes. We also call all the rest of the
nodes complete nodes. We use the most signi�cant bit of
Right to indicate whether a node is complete or not at
runtime. For complete nodes, we can reconstruct their
BV information as we decompress a cluster since their
parent BV nodes are available. For each incomplete node,
we decompress the differences between the predicted
and actual BVs and, then, store them at the Min and Max
variables. Also, we store the decompressed parent index
at Left instead of computing the left and right indices

of the node and storing them at Left and Right . We
lazily construct the BV information and tree structures of
incomplete nodes based on the data stored in the in-core
BV representation.
BV completion: If the BV node requested by GetBV (�)
is complete, we can simply return the stored in-core BV
representation to the application. If the node is incom-
plete, then we search for its local root, nl . This operation
can easily be performed by using the parent node index
stored in the Left of the incomplete node n. Then, we
force to load a cluster that the parent node of the local
root nl is assigned to, if the cluster is not yet loaded.
Note that, in order to load a cluster for the BV comple-
tion, we may need to recursively load another cluster.
Fortunately, during the typical hierarchical traversal of
a BVH, a cluster would have been already loaded if a
node located in the cluster's subtree has already been
accessed. Once we obtain the BV information of a parent
node of the local root nl , we can reconstruct the BV
information based on the BV difference stored at the Min
and Max of these incomplete nodes. We also compute
the left and right child indices for the Left and Right .
We complete the BV information of all the incomplete
nodes of the sub-tree rooted at the local root node nl

within the cluster that nl is assigned to. Then we set
those incomplete nodes to be the complete nodes.

We explained how our runtime framework handles a
call of GetBV (�). Our runtime framework also performs
the similar procedure for all the other functions except
for GetRootIndex (), which is processed very easily. Note
that all the BVH access functions except for GetRootIn-
dex () are called with a parameter of a node index,
nidx . These functions �rst �nd the requested node in the
same manner of processing GetBV (�). Once the node is
identi�ed, we simply return the requested information
(e.g., BV, child index, or triangle index) of the node to
the application.

5.3 Memory Management

In order to handle massive models whose BV nodes and
meshes cannot �t into the main memory, we employ
a simple memory management. Given a pre-allocated
memory pool of a size speci�ed by the user, we perform
the memory management at the granularity of clusters.
We maintain a LRU-list of clusters that have been ac-
cessed by our BVH access API. Since updating the LRU-
list of clusters is expensive, we update the list only when
we encounter a new cluster that is different from the
previously accessed cluster. Note that clusters located in
lower BVHs are accessed less frequently than clusters
located in upper portions of BVHs during the BVH
traversal. Our simple LRU-based replacement method
implicitly considers this factor since clusters located at
upper portions of BVHs are more likely to be re-visited
during the BVH traversals and, thus, they are less likely
to be unloaded.
Pre-loading the RACBVHs: Our RACBVH representa-
tions associated with the RACM representations require

9

TABLE 1
Benchmark Models and Compression Results

Model Tri. Vert. Size (MB) of Size (MB) of Compressed Compressed
uncompressed compressed bpn ratio

(M) (M) BVH Mesh BVH Mesh Tree BV BVH Mesh

St.Matthew 128 64 7811 3933 814 320 8.66 18.0 9.6:1 15.4:1
Iso surface 102 51 6254 3912 709 288 8.75 20.3 8.8:1 17.0:1
Lucy 28 14 1684 1008 193 73 8.70 20.7 8.7:1 17.3:1
Power plant 13 11 778 389 66 55 9.22 12.3 12:1 8.8:1
CAD turbine 1.8 0.9 108 67 13 5.5 9.19 21.6 8.3:1 15.2:1

Model complexity, compression results, and compression ratios for our
benchmark models are shown.Tree indicates tree structures in BVHs and

BV indicates the BV information. Our method achieves up to a 12:1
compression ratio over the uncompressed BV representation shown in

Listing 1. We use 16 bits for the quantization of the BV information, 4 K
node cluster size, and cache-ef�cient layouts.bpn stands for bits per node.

much less storage than uncompressed BVH and mesh
representations. Therefore, it is possible to sequentially
pre-load all the compressed data of massive models into
2–4 GB sized main memory of commodity hardware and
access those data without the expensive disk I/O access
at runtime. Since the sequential access to the disk during
the pre-loading is much faster than random access [1],
the pre-loading can be done quickly. We will show the
performance of tested benchmark applications with and
without pre-loading the compressed data in Sec. 6.2.

6 RESULTS

We have implemented our compression method, out-of-
core runtime decompression framework, and benchmark
applications on a 3.0 GHz Intel Core2 Extreme-PC that
has a quad-core CPU, with 32-bit WindowsXP, 4 GB
of RAM, and a SATA disk drive having a sequential
reading performance of 62 MB per second. We perform
various tests by using a single thread, unless mentioned
otherwise. We set our runtime decompression frame-
work to use no more than 2.3 GB of the main memory
to cache uncompressed data. Our compression method
works with any layouts or BVH construction methods.

Benchmark models: We have tested our method with
various benchmark models including the St. Matthew
model (128 M triangles, Fig. 1(a)), the Lucy model (28 M
triangles, Fig. 1(c)), a CAD turbine model (1.8 M trian-
gles), the power plant model (13 M triangles, Fig. 5), a
Hubo robot model (16 K triangles), and an iso-surface
model (102 M triangles, Fig. 1(b)) extracted from a
scienti�c simulation. More detail information about our
benchmark models is shown in Table 1.

6.1 Compression Results

We construct BVHs of benchmark models and store them
in a cache-coherent manner, particularly, cache-ef�cient
layouts [48]. We choose this layout since it shows a
high compression ratio and, more importantly, the best
runtime performance among the tested layouts, as we
will see later. We quantize the BV information using 16
bits. In this con�guration, we are able to achieve 27.5
bits per node (bpn) on average for our benchmarks. For
the St. Matthew model, our compression method spends

18.0 bpn to encode the BV information and 8.66 bpn to
encode tree structures. Compared to the uncompressed
AABB representation (Listing 1), we achieve up to a
12:1 compression ratio in our benchmark models. In
addition, we achieve about a 13:1 compression ratio
for the tested meshes by using RACMs. Overall, we
achieve a 10:1 compression ratio on average by using
RACM and RACBVH representations compared to using
uncompressed BVHs and meshes. Please refer to Table 1
for more detail compression results.

Decompression performance: Our compression method
can compress 0.4 M nodes per second. On the other
hand, our decompression method can process 4.2 M
nodes (= 135 MB) per second when we decompress
clusters sequentially. The one order of magnitude faster
decompression performance is mainly because we do
not need to construct various data structures like the
hash table that are only needed during the compression
process. Because of the fast decompression performance,
our method can improve the performance of many ap-
plications that use BVHs of massive models.

6.2 Benchmark Applications

We implement two different applications, ray tracing and
collision detection, to verify the bene�ts of our proposed
method. We choose these two applications because they
have different access patterns. Ray tracing typically tra-
verses larger portions of BVHs while collision detection
accesses smaller and more localized portions of BVHs.
We implement these two applications with the proposed
BVH access API. For comparison, we can also set our
BVH access API to access uncompressed BVHs stored in
the format of our in-core BV representation on the disk
without changing any application code. Note that ap-
plications get the original un-quantized BV information
from the stored uncompressed BV nodes. Therefore, ap-
plications get tighter BV information, which can achieve
higher culling ef�ciency during the BVH traversal, com-
pared with our quantized BVs of the RACBVHs.

6.2.1 Ray Tracing
We implement a BVH-based ray tracer [44], [55] for the
distributed ray tracing [56]. We construct BVHs opti-
mized with the surface-area heuristic (SAH) [9], which
is a well known method for constructing acceleration hi-
erarchies that maximize the performance of ray tracing.
We also use the projection method [9] for fast triangle-
ray intersection tests. To do this, we compute various
quantities (e.g., best projection planes, triangle normals,
etc.) on the �y as we read and decompress the RACM
representation. We use 512 by 512 image resolution for
the image generation tests.

We �rst test our BVH-based ray tracer only using
primary rays with small models (e.g., the Stanford bunny
model). Our single-thread BVH-based ray tracer can
process 1 million rays per second. Note that since our
ray tracer handles massive models that cannot �t into
the main memory, it runs at an out-of-core mode, which

10

5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

Frame Number

R
en

de
rin

g
T

im
e

(s
ec

.) Uncomp. BVH & Mesh
Uncomp. BVH & RACM
RACBVH & RACM
Parallel RACBVH & RACM

Fig. 6. Performance of Ray Tracing St. Matthew
Scene: This graph shows the rendering time during ray tracing the St.
Matthew scene shown in Fig. 1(a). By using random-accessible com-
pressed meshes (RACMs) without the random-accessible compressed
BVHs (RACBVHs), we achieve a 1.5:1 performance improvement over
using the original uncompressed data. By using both RACBVHs and
RACMs, we achieve a 2.2:1 runtime performance improvement on aver-
age. Also, by using four threads with RACBVHs and RACMs (labeled
as Parallel RACBVH and RACM), we achieve an additional 2 times
improvement and thus improve the performance by a factor of 4.4:1
over using the original uncompressed data. Accessing uncompressed
data with multiple threads does not improve the performance because
the disk I/O access is the main bottleneck.

requires another data management layer for accessing
massive data. We expect that the ray-packet methods [9]
can further improve the performance of our ray tracer.

We test our method with one light source and no
re�ection when we look at St. Matthew model as shown
in Fig. 1(a). In this con�guration, many of the rays are
coherent. By only using RACMs with the uncompressed
BVHs, we achieve a 1.5:1 performance improvement
over using the original uncompressed data. However,
by using both RACBVHs and RACMs, we are able to
achieve a 2.6:1 performance improvement on average
over using the uncompressed data. We also test the pre-
loading of the compressed data. In this case, we spend 18
seconds on sequentially reading and pre-loading 1.1 GB
of the RACM and RACBVH. We observe a 4.4:1 per-
formance improvement over the original uncompressed
data at runtime. Note that we cannot pre-load the un-
compressed data since it takes about 11.7 GB.

We also measure the rendering time during ray tracing
the St. Matthew model in the scene setting shown in
Fig. 1(a). In this scene, we use 7 point light sources,
re�ections, and 3 by 3 strati�ed sampling; this con�gura-
tion results in many incoherent rays. Initially, the camera
is located far from the St. Matthew model and, then, it
zooms to the face of the St. Matthew; please refer to
the accompanying video. We observe a 1.5:1 and a 2.2:1
performance improvement on average by using RACMs
with uncompressed BVHs and by using both RACMs
and RACBVHs respectively over by using the original
uncompressed data. Fig. 6 shows the ray tracing time for
each of these three methods. The performance improves
by using RACBVHs and RACMs because the I/O time
is reduced due to the fast decompression performance
and selective decompression during the BVH traversal.

We also measure the performance of ray tracing the
iso-surface model shown in Fig. 1(b). We use 5 point

light sources and 3 by 3 strati�ed sampling. In this
con�guration, we use both RACM and RACBVH rep-
resentations. We improve the performances by a factor
of 2.6:1 and 1.9:1 on average over using uncompressed
data with and without the pre-loading the compressed
data respectively.

6.2.2 Collision Detection
We implement collision detection and integrate it into a
rigid-body simulation [57]. Collision detection identi�es
colliding regions between two models by traversing
BVHs. We create a benchmark where we drop the Lucy
model on top of the CAD turbine model (see Fig. 1(c)).

We measure the collision detection time during a sim-
ulation that runs for 215 simulation steps. In the tested
benchmark models, the sizes of compressed RACBVHs
and RACMs are 198 MB and 78 MB compared to 2.8 GB
of the original meshes and BVHs. Since RACMs and
RACBVHs can be stored in main memory, we pre-
load RACMs and RACBVHs, if they are used. Pre-
loading RACMs and RACBVHs take about 4 seconds.
We improve the performance of the collision detection
on average by a factor of 1.4:1, 2.5:1, and 2.9:1 using
only RACMs, only RACBVHs, and both RACMs and
RACBVHs respectively over using uncompressed data.
On average, collision detection accessing RACMs and
RACBVHs takes 5 milliseconds (ms) per step. We also
test and measure performance of another collision detec-
tion benchmark consisting of the power plant and Hubo
models (see Fig. 5). In this case, we achieve a 2.1:1 per-
formance improvement over using uncompressed data.

6.3 Parallel Random Access

Our compression and decompression methods can be
extended to support parallel random access and exploit
the widely available multi-core CPU architecture. To
enable the parallel random access in our method, we use
a lock to avoid completing the same node from multiple
threads. Also, we use a pseudo LRU method, the second-
chance algorithm [58] that reduces locking the same
node in the LRU list during the update of the list. We
test the performance of our method with the ray tracing
benchmark. For our parallel ray tracer, we simply divide
the image plane into multiple units and assign each unit
to a thread. Then, each thread generates and processes
primary and secondary rays while accessing compressed
data. The memory pool that caches decompressed data
is shared among threads. We use four threads and pre-
load all the compressed data. We measure the rendering
time during the ray tracing of the St. Matthew model
with incoherent rays in the scene setting described in
Sec. 6.2.1.

When we use the original data, the performance de-
creases by a factor of 1:1.8 by using four threads over
using a single thread. Since four different threads request
more disk I/O accesses, these more I/O accesses worsen
the disk seek performance and lower the performance
of ray tracing. On the other hand, our method achieves

11

TABLE 2
Cluster Size vs. Performance

Cluster size 256 512 1K 2K 4K 8K 16K

Compression ratio 9.3 9.7:1 9.8:1 9.7:1 9.6:1 9.4:1 9.2:1
RT w/ coherent rays (s) 352 339 351 329 319 318 316

RT w/ incoherent rays (s) 2,220 2,242 2,278 2,307 2,339 2,422 2,470
Collision detection (ms) 4.69 4.74 4.93 5.02 5.34 5.76 6.13

This table shows the compression ratio and ray tracing time (RT) of the St.
Matthew model and collision detection time, as a function of the cluster size.

a 2.1:1 performance improvement over using a single
thread. Therefore, our method achieves a 4.4:1 perfor-
mance improvement for ray tracing the St. Matthew
model over using the original data. This higher scalabil-
ity of our method is achieved by removing the expensive
and low-performing disk I/O access. The performance
of ray tracing the St. Matthew model when using four
threads is shown in Fig. 6.

7 ANALYSIS AND COMPARISON

In this section, we analyze the performance of our
method and compare its performance with other related
techniques.

7.1 Analysis

The performance of our method is affected by several
factors. We discuss them in terms of their impact on the
runtime performance of applications. We report various
results by using a single CPU core.

Cluster size: In order to see how the compression ratio
varies as a function of cluster sizes, we compute different
versions of the RACBVHs of the St. Mathew model with
different cluster sizes ranging from small to large sizes:
0.5K, 1K, 2K, 4K, 8K and 16K nodes (see Table 2). Note
that encoding BVs and parent nodes in the front requires
more bits as the cluster size becomes larger, since BV
prediction errors vary more and the front's size is larger.
On the other hand, encoding parent nodes of local root
nodes and child indices of local leaf nodes require fewer
bits as the cluster size becomes larger, since there are
fewer local roots and leaf nodes. Given these two factors,
we achieve the highest compression ratios when the
cluster size is 1 K nodes. However, the compression
ratios are rather stable in the tested cluster sizes.

We also test the performance of ray tracing and colli-
sion detection with the different cluster sizes. We �rst
measure ray tracing time of St. Matthew model with
coherent rays. The performance improves even when we
use very large clusters, since the disk I/O performance
improves by reading larger clusters and loaded clusters
may be reused during the processing of many coherent
rays. However, when we perform ray tracing with in-
coherent rays, the performance worsens as the cluster
sizes become larger, since we have to frequently load
and unload clusters, caused by incoherent data access
pattern. Also, the performance of collision detection goes
down as the cluster size is larger, since we have to load
larger clusters, where most of nodes may not be accessed
given the very localized data access pattern of collision

detection. Although it is very hard to conclude which
cluster size is the best across different applications, we
found that clusters with 1 K to 4 K nodes show high
performances among the tested applications.

Layouts: We also compare the performance of applica-
tions with different layouts of BVHs. We compute depth-
�rst, van Emde Boas [47], and cache-ef�cient layouts [48]
of our tested benchmark models. Surprisingly, the best
compression results are achieved with the depth-�rst
layouts. However, we found that cache-ef�cient layouts
show the best runtime performance, followed by van
Emde Boas, and depth-�rst layouts. This is mainly be-
cause of the high spatial and cache coherences that
the cache-ef�cient layouts maintain. Performance results
with different layouts of ray tracing the St. Matthew
model are shown in Table. 3.

Number of triangles per leaf node: Our simple BV
representation (Listing 1) can be extended to store mul-
tiple triangles by using a global triangle index list. If a
leaf node contains multiple triangles, we store indices
of these triangles consecutively in the list. Then the
Left and Right simply contain the starting and ending
positions of these triangle indices in the list. For ef�cient
intersection tests, we compute a sub-BVH for triangles
contained in a leaf node on the �y. Also, we cache
the computed sub-BVHs of leaf nodes and apply our
memory management method to these cached data. We
compare the performance of ray tracing the St. Matthew
model with different number of triangles per leaf node:
1, 4, 16, and 128. As the number of triangles per leaf node
increases, the size of BVHs decreases. The performance
peaks when we assign 16 triangles to each leaf node
and, in this case, our method shows a 1.8:1 performance
improvement over using the uncompressed data.

Extensions to other types of BVs and k-ary BVHs:
At a high level, our compression method compresses
a BV by �rst quantizing the BV and predicting its
two child BVs by assuming a most likely partitioning
plane during the BVH construction. This idea can be
applied easily to other types of BVs such as spheres
and OBBs, since these BVs and AABBs are constructed
using a similar hierarchical partitioning scheme. Also,
our method could be extended to support k-ary tree
structures. During encoding child indices, we explicitly
encode extra information to indicate whether a node is
the left or right node of its parent node. In the case of
k-ary tree structures, we can simply encode a position
of a node among k different child nodes.

Limitations: Accessing the RACBVH and RACM repre-
sentations has some overhead. For example, we have to
perform a few bit operations computing cluster indices
for each GetBV (�) call. Also, the compressed BVs may
give fewer tight extents and cause more intersection tests
for applications because they are quantized more conser-
vatively than the original uncompressed BVs. Therefore,
when all the data needed to perform an application are
already in main memory, our method might lower the

12

TABLE 3
Layouts vs. Performance

Layouts Size of Compression Rendering
RACBVHs(MB) ratio time(sec.)

Depth-�rst 776 10.1:1 334
van Emde Boas 777 10.0:1 332
Cache-ef�cient 814 9.6:1 319

This table shows the size of our RACBVHs with different layouts. The
compression ratio is computed over the uncompressed in-core BV

representation. Cache-ef�cient layout shows the best runtime performance
during ray tracing the St. Matthew model.

performance. To verify this, we perform the ray tracing
of a simpli�ed St. Matthew model consisting of 8 M
triangles, whose BVH and mesh can be stored in main
memory. We load all the data into main memory. In
this case, we observe 1% more intersection tests and,
thus, about a 1% lower performance using our method
than using the uncompressed data at runtime. Also,
we perform the collision detection of the rigid-body
simulation by using simpli�ed models that can be stored
in main memory. We observe 3% more intersection tests
and 3% lower performance using our method than using
the uncompressed data.

7.2 Comparison

We compare our method with prior work on reducing
sizes of BVHs.

Hierarchical quantization methods: QSplat [37] and
Quantized kd-tree [38] employed �xed-rate quantiza-
tion methods. We also use a �xed-rate quantization
method and further compress them by using a simple
prediction method and encoding prediction errors with
a dictionary-based encoder. We choose to use this more
aggressive compression method to further reduce the
storage requirement and lower the expensive data access
time, which is getting more expensive given the current
computation trend [1]. We compare our compressed
representation over the quantized BVH representation,
whose bounding volume information is quantized to a
�xed 16 bits. Our method achieves a 6:1 compression
ratio over the quantized BVH representation. Moreover,
our method still improves the runtime performance 2.3
times over using the quantized BVH for ray tracing the
St. Matthew model.

Gzip compression: One can use the gzip compression
method to compute compact BVHs. We compare our
method with the gzip compression method. Since BVHs
that are compressed by gzip do not provide random
access directly, we perform gzip compression for each
cluster. We use the zlib library [59]. Gzip achieves a
3.2:1 compression ratio over the original uncompressed
BVHs and its decompression throughput is 17 MB per
second. However, it performs 6.7% slower than using
uncompressed data for the ray tracing, mainly because
of its low decompression performance. Our method
achieves a compression ratio about 3 times higher and a
decompression performance six times faster. As a result,

Fig. 7. Data Access Throughput vs. Compression
Ratio: This graph shows the data access throughput during ray
tracing and the compression ratio of each compression method. The
data access throughput is computed by summing the data accessing
time and decompression time. Uncompressed BVHs do not require any
decompression time. We set the data fetching time to be zero in the
case of pre-loading the RACBVHs. Note that the higher compression
ratio does not always cause the higher data access throughput.

our method improves the runtime performance more
than 3 times over using gzip for the ray tracing. This
result is not surprising since gzip uses a combination
of LZ77 and Huffman encoding [39], which are expen-
sive compression methods which do not work well for
the non-repeating �oating values found in the original
uncompressed BVHs. We measure the data access time
including the I/O time and decompression time dur-
ing ray tracing the St. Matthew model with different
compression methods and original uncompressed data
(see Fig. 7). As can be seen in the �gure, our RACBVH
representation shows much higher compression ratio
and lower data access time.

Ray-Strip methods: Recently, Lauterbach et al. [40] pro-
posed a RayStrip, an in-core compact hierarchy repre-
sentation for ray tracing and further improved it in a
following work [41]. Its main idea is to compute a trian-
gle strip and build a balanced implicit spatial kd-tree on
the triangle strip. This method is optimized for an in-core
ray tracer and is not tested with other applications. Since
this method always uses a complete spatial kd-tree, its
runtime performance may be lower than ray tracers that
use optimized hierarchies (e.g., hierarchies optimized
with the SAH). Also, our method achieves a 50% higher
compression ratio and may perform better because it can
use optimized BVHs. However, the Ray-Strip represen-
tation can be used as a compact in-core representation
in our runtime framework for the improved runtime
performance. The Ray-Strip representations could be
used for lower regions of BVHs whose hierarchy quality
has less impact on the overall ray tracing performance.

Statistical compression methods: Most prior compres-
sion methods that target higher compression ratio use
statistical methods such as an arithmetic encoder [52].
We also initially tried an arithmetic encoder to achieve
higher compression ratio. We found that, by using the
arithmetic encoder, we can improve a compression ratio
by a factor of two, but the decompression performs
about three times slower than using our dictionary-
based method. Therefore, the proposed dictionary-based
method improves the runtime performance by a factor
of two for the tested benchmark applications over the

13

arithmetic encoder.

8 CONCLUSION AND FUTURE WORK

We have presented a novel compression and runtime
BVH decompression framework that transparently sup-
ports random access on the compressed BVHs. Our
compression method preserves the original layout of
a BVH and sequentially compresses BVs of a BVH.
In order to support random access on the compressed
BVHs, we decompose an input BVH into a set of clusters.
Each cluster contains consecutive BV nodes and serves
as an access point at runtime. We propose a general
BVH access API to transparently support random access
on our RACBVH representation. Our decompression
framework selectively fetches, decompresses, and stores
data in our in-core BVH representation. We have demon-
strated the bene�ts of our methods on two applications
having different characteristics. We achieved up to a 12:1
compression ratio and up to a 4:1 runtime performance
improvement in the tested benchmarks.

There are many interesting avenues for future work.
Our current method achieved two times performance
improvement by supporting parallel random access on
our compressed representations with four CPU-cores
for ray tracing. Although this 50% parallel ef�ciency is
higher than that achieved by accessing the original data,
we would like to achieve a higher parallel ef�ciency
by designing more compact in-core representations and
aggressive compression methods. Also, we would like to
apply our method to highly parallel architectures such
as GPUs and Larrabee architecture [60]. Also, some
of interactive ray tracers employ levels-of-detail (LOD)
hierarchies. These LOD-based ray tracers can have very
high space requirements due to the LOD hierarchy. We
would like to apply our method to reduce the memory
requirements of LOD hierarchies and design an interac-
tive LOD-based ray tracer. Finally, our current method
preserves the mesh layouts, causing our method to store
meshes separately from BVHs. It may be possible to
achieve a higher compression ratio and runtime perfor-
mance by coupling meshes and BVHs, without preserv-
ing the original triangle layouts. It may be interesting to
design such a method, while maintaining coherent mesh
layouts within BVHs.

ACKNOWLEDGMENT

We would like to thank anonymous reviewers for their
constructive feedbacks. We also thank Paul Merrell and
members of KAIST SGLab. for their English review and
helpful feedbacks. The St. Matthew and Lucy model are
courtesy of Stanford University. The isosurface model is
courtesy of the LLNL. The power plant model and CAD
turbine models are courtesy of an anonymous donor
and of Kitware respectively. This project was supported
in part by MKE/MCST/IITA [2008-F-033-02,2009-S-001-
01], MCST/KEIT [2006-S-045-1], MKE/IITA u-Learning,
MKE digital mask control, MCST/KOCCA-CTR&DP-
2009, KRF-2008-313-D00922, and MSRA E-heritage.

REFERENCES

[1] J. L. Hennessy, D. A. Patterson, and D. Goldberg, Computer
Architecture, A Quantitative Approach. Morgan Kaufmann, 2007.

[2] S. M. Rubin and T. Whitted, “A 3-dimensional representation for
fast rendering of complex scenes,” Computer Graphics, vol. 14,
no. 3, pp. 110–116, 1980.

[3] M. Lin and D. Manocha, “Collision and proximity queries,”
Handbook of Discrete and Computational Geometry, 2003.

[4] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann,
L. Raghupathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-
Thalmann, W. Strasser, and P. Volino, “Collision detection for
deformable objects,” Computer Graphics Forum, vol. 19, no. 1, pp.
61–81, 2005.

[5] P. M. Hubbard, “Interactive collision detection,” Proc. of IEEE
Symposium on Research Frontiers in Virtual Reality, pp. 24–31, 1993.

[6] G. van den Bergen, “Ef�cient collision detection of complex
deformable models using AABB trees,” Journal of Graphics Tools,
vol. 2, no. 4, pp. 1–13, 1997.

[7] S. Gottschalk, M. Lin, and D. Manocha, “OBB-Tree: A hierarchical
structure for rapid interference detection,” Proc. of ACM Siggraph,
pp. 171–180, 1996.

[8] J. Klosowski, M. Held, J. Mitchell, H. Sowizral, and K. Zikan,
“Ef�cient collision detection using bounding volume hierarchies
of k-dops,” IEEE Trans. on Visualization and Computer Graphics,
vol. 4, no. 1, pp. 21–36, 1998.

[9] I. Wald, “Realtime Ray Tracing and Interactive Global Illumi-
nation,” Ph.D. dissertation, Computer Graphics Group, Saarland
University, 2004.

[10] P. Alliez and C. Gotsman, “Recent advances in compression of 3d
meshes,” Advances in Multiresolution for Geometric Modelling, pp.
3–26, 2004.

[11] C. Gotsman, S. Gumhold, and L. Kobbelt, “Simpli�cation and
compression of 3d meshes,” in Tutorials on Multiresolution in
Geometric Modelling. Springer, 2002, pp. 319–361.

[12] C. Touma and C. Gotsman, “Triangle mesh compression,” in
Graphics Interface, 1998, pp. 26–34.

[13] O. Devillers and P.-M. Gandoin, “Geometric compression for
interactive transmission,” in IEEE Visualization, 2000, pp. 319–326.

[14] J. Peng and C.-C. J. Kuo, “Geometry-guided progressive lossless
3d mesh coding with octree (ot) decomposition,” ACM Trans.
Graph., vol. 24, no. 3, pp. 609–616, 2005.

[15] P. Alliez and M. Desbrun, “Valence-driven connectivity encoding
for 3D meshes,” in Eurographics, 2001, pp. 480–489.

[16] F. Kälberer, K. Polthier, U. Reitebuch, and M. Wardetzky, “Free-
lence - coding with free valences,” Comput. Graph. Forum, vol. 24,
no. 3, pp. 469–478, 2005.

[17] M. Isenburg and J. Snoeyink, “Face Fixer: Compressing polygon
meshes with properties,” in SIGGRAPH, 2000, pp. 263–270.

[18] S. Gumhold and W. Strasser, “Real time compression of triangle
mesh connectivity,” in SIGGRAPH, 1998, pp. 133–140.

[19] J. Rossignac, “Edgebreaker: Connectivity compression for triangle
meshes,” IEEE Transactions on Visualization and Computer Graphics,
vol. 5, no. 1, pp. 47–61, 1999.

[20] H. Lee, P. Alliez, and M. Desbrun, “Angle-analyzer: A triangle-
quad mesh codec,” Computer Graphics Forum, vol. 21, pp. 383–392,
2002.

[21] S. Choe, J. Kim, H. Lee, S. Lee, and H.-P. Seidel, “Mesh compres-
sion with random accessibility,” in Israel-Korea Bi-National conf.,
2004, pp. 81–86.

[22] S. Choe, J. Kim, H. Lee, and S. Lee, “Random accessible mesh
compression using mesh charti�cation,” IEEE Trans. on Visualiza-
tion and Computer Graphics, vol. 15, no. 1, pp. 160–173, 2009.

[23] S.-E. Yoon and P. Lindstrom, “Random-accessible compressed tri-
angle meshes,” IEEE Trans. on Visualization and Computer Graphics
(Proc. Visualization), vol. 13, no. 6, pp. 1536–1543, 2007.

[24] E. Gobbetti, F. Marton, P. Cignoni, M. Di Benedetto, and F. Ganov-
elli, “C-bdam - compressed batched dynamic adaptive meshes for
terrain rendering,” Computer Graphics Forum, vol. 25, no. 3, pp.
333–342, 2006.

[25] J. Kim, S. Choe, and S. Lee, “Multiresolution random accessible
mesh compression,” Eurographics, vol. 25, no. 3, pp. 323–332, 2006.

[26] D. L. Gall, “Mpeg: a video compression standard for multimedia
applications,” Communications of the ACM, vol. 34, pp. 46–58, 1991.

[27] I. Ihm and S. Park, “Wavelet-based 3d compression scheme for
interactive visualization of very large volume data,” Computer
Graphics Forum, vol. 18, no. 1, pp. 3–15, 1999.

14

[28] F. Rodler, “Wavelet based 3D compression with fast random
access for very large volume data,” in Paci�c Graphics, 1999, pp.
108–117.

[29] S. Lefebvre and H. Hoppe, “Perfect spatial hashing,” in SIG-
GRAPH, 2006, pp. 579–588.

[30] J. Katajainen and E. Makinen, “Tree compression and optimiza-
tion with applications,” International Journal of Foundations of
Computer Science, vol. 1, no. 4, pp. 425–447, 1990.

[31] S. Zaks, “Lexicographic generation of ordered trees,” Theoretical
computer science, pp. 63–82, 1980.

[32] D. Zerling, “Generating binary trees using rotations,” Journal of
ACM, vol. 32, no. 3, pp. 694–701, 1985.

[33] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. Kluwer Academic Publishers, 1991.

[34] D. Cline, K. Steele, and P. K. Egbert, “Lightweight bounding
volumes for ray tracing,” Journal of Graphics Tools, vol. 11, no. 4,
pp. 61–71, 2006.

[35] J. Mahovsky, “Ray tracing with reduced-precision bounding vol-
ume hierarchies,” PhD Thesis, University of Calgary, 2005.

[36] P. Terdiman, “Opcode: Optimized collision detection,” 2003.
[Online]. Available: http://www.codercorner.com/Opcode.htm

[37] S. Rusinkiewicz and M. Levoy, “Qsplat: A multiresolution point
rendering system for large meshes,” SIGGRAPH, pp. 343–352,
2000.

[38] E. Hubo, T. Mertens, T. Haber, and P. Bekaert, “The quantized
kd-tree: Ef�cient ray tracing of compressed point clouds,” in IEEE
Symp. on Interactive Ray Tracing, 2006, pp. 105–113.

[39] D. Salomon, Data Compression. Springer, 2007.
[40] C. Lauterbach, S.-E. Yoon, and D. Manocha, “Ray-Strips: A

Compact Mesh Representation for Interactive Ray Tracing,” in
IEEE/EG Symposium on Interactive Ray Tracing, 2007, pp. 19–26.

[41] C. Lauterbach, S.-E. Yoon, M. Tang, and D. Manocha, “ReduceM:
Interactive and memory ef�cient ray tracing of large models,”
Computer Graphics Forum (Proc. of EG Symp. on Rendering), vol. 27,
no. 4, pp. 1313–1321, 2008.

[42] S. Lefebvre and H. Hoppe, “Compressed random-access trees for
spatially coherent data,” in Eurographics Symposium on Rendering,
2007, pp. 339–349.

[43] I. Wald, “On fast Construction of SAH based Bounding Volume
Hierarchies,” in EG/IEEE Symposium on Interactive Ray Tracing,
2007, pp. 33–40.

[44] I. Wald, S. Boulos, and P. Shirley, “Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies,” ACM Transactions
on Graphics, vol. 26, no. 1, p. 6, 2007.

[45] L. Arge, G. Brodal, and R. Fagerberg, “Cache oblivious data
structures,” Handbook on Data Structures and Applications, 2004.

[46] M. Isenburg and P. Lindstrom, “Streaming meshes,” in IEEE
Visualization, 2005, pp. 231–238.

[47] P. van Emde Boas, “Preserving order in a forest in less than
logarithmic time and linear space,” Inf. Process. Lett., vol. 6, pp.
80–82, 1977.

[48] S.-E. Yoon and D. Manocha, “Cache-ef�cient layouts of bound-
ing volume hierarchies,” Computer Graphics Forum (Eurographics),
vol. 25, no. 3, pp. 507–516, 2006.

[49] C. Silva, Y.-J. Chiang, W. Correa, J. El-Sana, and P. Lindstrom,
“Out-of-core algorithms for scienti�c visualization and computer
graphics,” in IEEE Visualization Course Notes, 2002.

[50] M. Isenburg and S. Gumhold, “Out-of-core compression for gi-
gantic polygon meshes,” in SIGGRAPH, 2003, pp. 935–942.

[51] S.-E. Yoon, D. Manocha, P. Lindstrom, and V. Pascucci,
“Openccl,” 2005. [Online]. Available: http://gamma.cs.unc.edu/
COL/OpenCCL

[52] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding
revisited,” ACM Transactions on Information Systems, vol. 16, no. 3,
pp. 256–294, 1998.

[53] J. Klosowski, M. Held, J. S. B. Mitchell, K. Zikan, and H. Sowizral,
“Ef�cient collision detection using bounding volume hierarchies
of k-DOPs,” IEEE Trans. Visualizat. Comput. Graph., vol. 4, no. 1,
pp. 21–36, 1998.

[54] A. Reshetov, A. Soupikov, and J. Hurley, “Multi-level ray tracing
algorithm,” ACM Trans. Graph., vol. 24, no. 3, pp. 1176–1185, 2005.

[55] C. Lauterbach, S. Yoon, D. Tuft, and D. Manocha, “RT-DEFORM:
Interactive ray tracing of dynamic scenes using bvhs,” IEEE
Symposium on Interactive Ray Tracing, pp. 39–45, 2006.

[56] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,”
in SIGGRAPH, 1984, pp. 137–145.

[57] B. Mirtich and J. Canny, “Impulse-based simulation of rigid
bodies,” in Symposium on Interactive 3D Graphics, 1995, pp. 181–
188.

[58] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System
Concepts. Jon Wiley and Sons, 2003.

[59] J. loup Gailly and M. Adler, “zlib,” 2005. [Online]. Available:
http://www.zlib.net

[60] L. Seiler, D. Carman, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Gro-
chowski, T. Juan, and P. Hanrahan, “Larrabee: A many-core x86
architecture for visual computing,” ACM Transactions on Graphics,
vol. 27, no. 3, 2008.

Tae-Joon Kim is currently a Ph. D. student at
KAIST. He received his B.S. degree in computer
science from KAIST in 2007. His research inter-
ests include visualization, interactive rendering,
and data compression.

Bochang Moon is currently a M.S. student at
KAIST. He received his B.S. degree in computer
science from Chung-Ang University in 2008. His
research interests include visualization, interac-
tive rendering, and global illumination.

Duksu Kim is currently a M.S. student at KAIST.
He received his B.S. degree in information &
communication engineering from Sung Kyun
Kwan University in 2008. His research interests
include collision detection, motion planning, and
parallel computing.

Sung-Eui Yoon is currently an assistant profes-
sor at KAIST (Korea Advanced Institute of Sci-
ence and Technology). He received the B.S. and
M.S. degrees in computer science from Seoul
National University in 1999 and 2001 respec-
tively. He received his Ph.D. degree in computer
science from the University of North Carolina
at Chapel Hill in 2005. He was a postdoctoral
scholar at Lawrence Livermore National Labora-
tory. His research interests include visualization,
interactive rendering, geometric problems, and

cache-coherent algorithms and layouts. He is particularly interested
in designing scalable algorithms that can handle massive models in
commodity hardware. He wrote a monograph on real-time massive
model rendering with other three co-authors. He is a member of IEEE,
ACM, and Eurographics.

	Introduction
	Related Work
	Bounding Volume Hierarchies
	Mesh Compression
	Compression and Random Access
	Tree and BVH Compression

	Overview
	BVHs of Massive Models
	Our Approach

	Compression
	Layout Preserving BVH Compression
	Encoding Bounding Volumes
	Encoding Tree Structures
	Encoding Child Indices
	Encoding Triangle Indices

	Dictionary-based Compression
	Random-Accessible Compressed Meshes (RACMs)

	Runtime Decompression Framework
	BVH Access API
	Runtime BVH Access Framework
	Memory Management

	Results
	Compression Results
	Benchmark Applications
	Ray Tracing
	Collision Detection

	Parallel Random Access

	Analysis and Comparison
	Analysis
	Comparison

	Conclusion and Future Work
	References

