
Lecturer: Bochang Moon

Viewing Transformation
Lecture slides (AI3501/CT4201/EC4215 – Computer Graphics)

1



• Transform all points from world space to eye space
◦ Camera position transforms into the origin 

Viewing Transformation
Modeling 

Transformation

Illumination

Viewing 
Transformation

Clipping

Projection

Rasterization

Display



Viewing Transformation
• Define camera position and its orientation

• Specify the following:
o Location of the camera, 𝒆𝒆 = (𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑧𝑧𝑒𝑒)

o Direction where the camera is aiming at, vector 𝒈𝒈 = 𝑥𝑥𝑔𝑔,𝑦𝑦𝑔𝑔, 𝑧𝑧𝑔𝑔
o Upward direction of the camera, vector 𝒕𝒕 = 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 , 𝑧𝑧𝑡𝑡

 Roughly orthogonal to 𝒈𝒈 (not necessary)

• A user specifies these variables.

• These variables are defined in world space.



Viewing Transformation
• Our task: transform all points defined in world space into new points in eye space

• Need to build a coordinate system (eye space) from the specifications of the camera

z

y

x o

v

u

w

e



Viewing Transformation
• Our task: transform all points defined in world space into new points in eye space

• Need to build a coordinate system (eye space) from the specifications of the camera
o Construct basis vectors from two input vectors

o 𝒘𝒘 = − 𝒈𝒈
∥𝒈𝒈∥

o 𝒖𝒖 = 𝒕𝒕×𝒘𝒘
∥𝒕𝒕×𝒘𝒘∥

o 𝒗𝒗 = 𝒘𝒘 × 𝒖𝒖 z

y

x o

v

u

w

e
g



Viewing Transformation in OpenGL
• void gluLookAt(GLdouble eyeX, GLdouble eyeY, GLdouble eyeZ, 

• GLdouble centerX, GLdouble centerY, GLdouble centerZ, 

• GLdouble upX, GLdouble upY, GLdouble upZ);

• Parameters 
o eyeX, eyeY, eyeZ

 Specifies the position of the camera
o centerX, centerY, centerZ

 Specifies the position of the reference point that your camera is looking at
o upX, upY, upZ

 Specifies the direction of the up vector

• Issue: centerX, centerY, centerZ is not the gaze vector g. How can we compute this?



Viewing Transformation in OpenGL
• This can be considered as the following matrix transformations:

o Step 1: translate the camera position e to the origin in world space 
o Step 2: rotate u, v, w to be aligned to x, y, z

• 𝑴𝑴𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 = 𝒖𝒖 𝒗𝒗
0 0

𝒘𝒘 𝒆𝒆
0 1

−1

• =

𝑥𝑥𝑢𝑢 𝑦𝑦𝑢𝑢
𝑥𝑥𝑣𝑣 𝑦𝑦𝑣𝑣

𝑧𝑧𝑢𝑢 0
𝑧𝑧𝑣𝑣 0

𝑥𝑥𝑤𝑤 𝑦𝑦𝑤𝑤
0 0

𝑧𝑧𝑤𝑤 0
0 1

1 0
0 1

0 −𝑥𝑥𝑒𝑒
0 −𝑦𝑦𝑒𝑒

0 0
0 0

1 −𝑧𝑧𝑒𝑒
0 1

(why?)


	Viewing Transformation
	Viewing Transformation
	Viewing Transformation
	Viewing Transformation
	Viewing Transformation
	Viewing Transformation in OpenGL
	Viewing Transformation in OpenGL

