
Lecturer: Bochang Moon

Acceleration Data Structures
Lecture slides (CT4201/EC4215 – Computer Graphics)

1

Ray Tracing
• Procedure for Ray Tracing:

• For each pixel
o Generate a primary ray (with depth 0)
o While (depth < d) {

 Find the closest intersection point between the ray and objects
 If (there is a hit) then

 Generate a shadow ray
 If (there is no hit between the shadow ray and a light) then

 Perform a shading
 Generate a secondary ray (reflection or refraction ray) // increase the ray depth +1

 Else
 Perform a shading with background color }

o Return background color

Naïve Ray Tracing
• Problem: find the closest intersection point between the ray 𝒑𝒑 𝑡𝑡 = 𝒆𝒆 + 𝑡𝑡𝒅𝒅

• For each triangle
o Compute the intersection point (i.e., t) between a ray and triangle
o If (there is a hit and t < stored t)

 Store shading information and the ray parameter t

o Return the shading information

• The complexity of this naïve algorithm is O(N), where N is the number of triangles in the scene

Spatial Data Structures
• Group objects together into a hierarchy to accelerate the geometry processing

• The complexity using the acceleration data structures can be a sub-linear time (e.g., O(logN))

• Object partitioning:
o Bounding Volume Hierarchy (BVH)

• Space partitioning:
o Uniform Grids
o Octree (3D) or QuadTree (2D)
o Binary space partition tree (BSP)
o kD-Trees

Bounding Boxes
• The key operation is to perform an intersection

test between a ray and bounding box
o Need to know only whether a ray hits the box or

not

• Ray: 𝒑𝒑 𝑡𝑡 = 𝒆𝒆 + 𝑡𝑡𝒅𝒅

• 2D version
o 𝑥𝑥, 𝑦𝑦 ∈ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

Ray

Bounding box

Bounding Boxes
• Ray: 𝒑𝒑 𝑡𝑡 = 𝒆𝒆 + 𝑡𝑡𝒅𝒅

• 2D version
o 𝑥𝑥, 𝑦𝑦 ∈ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

• 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑒𝑒
𝑥𝑥𝑑𝑑

• 𝑡𝑡𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑒𝑒
𝑥𝑥𝑑𝑑

• 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑒𝑒
𝑦𝑦𝑑𝑑

• 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑒𝑒
𝑦𝑦𝑑𝑑

𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

Bounding Boxes
• Ray: 𝒑𝒑 𝑡𝑡 = 𝒆𝒆 + 𝑡𝑡𝒅𝒅

• 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑒𝑒
𝑥𝑥𝑑𝑑

, 𝑡𝑡𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑒𝑒
𝑥𝑥𝑑𝑑

• 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑒𝑒
𝑦𝑦𝑑𝑑

, 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑒𝑒
𝑦𝑦𝑑𝑑

• 𝑡𝑡 ∈ 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

• 𝑡𝑡 ∈ 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

• 𝑡𝑡 ∈ 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ∩ 𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, 𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

• A ray hits the box if and only if the two intervals overlap.

Bounding Boxes
• Procedure for testing the intersection

o Compute 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, 𝑡𝑡𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
o If (𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 > 𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑜𝑜𝑜𝑜 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 < 𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)

 No hit

o else
 Hit

Bounding Boxes
• Negative 𝑥𝑥𝑑𝑑 or 𝑦𝑦𝑑𝑑:

o A ray will hit 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 (𝑜𝑜𝑜𝑜 𝑦𝑦max) before it hits 𝑥𝑥𝑚𝑚𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

o If (𝑥𝑥𝑑𝑑 ≥ 0) then

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑

 𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 = (𝑥𝑥𝑚𝑚𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑

o else

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑥𝑥𝑚𝑚𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑥𝑥𝑚𝑚𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑

o If (𝑦𝑦𝑑𝑑 ≥ 0) then

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑒𝑒)/𝑦𝑦𝑑𝑑

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑒𝑒)/𝑦𝑦𝑑𝑑

o else

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑒𝑒)/𝑦𝑦𝑑𝑑

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑒𝑒)/𝑦𝑦𝑑𝑑

Bounding Boxes
• Zero 𝑥𝑥𝑑𝑑 or 𝑦𝑦𝑑𝑑:

o Divide-by-zero issue

• Given a number 𝑎𝑎 ∈ ℝ+, IEEE floating point rules provide the following:

o +𝑎𝑎
+0

= ∞

o −𝑎𝑎
+0

= −∞

o 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = [−∞,−∞], [∞,∞]: no hit
o 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥,𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = −∞,∞ : hit
o The precious code works for +0 denominator

• How about -0 denominator?
o We can test a reciprocal of the ray direction (e.g., 1/𝑥𝑥𝑑𝑑)

Bounding Boxes
• -0 denominator?

o If (𝑥𝑥𝑑𝑑 ≥ 0) then

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑
 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑

o else

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑
 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑

• Problem: the first if statements will be true because −0 == 0 is true (IEEE floating point standard), so we can miss valid hits.
o A remedy is test a reciprocal of the ray direction (e.g., 1/𝑥𝑥𝑑𝑑) instead of 𝑥𝑥𝑑𝑑
o More detail:

 An Efficient and Robust Ray–Box Intersection Algorithm, Williams et al. 2005

Hierarchical Bounding Boxes
• Motivation: expensive as we need to test all primitives within a bounding box that a ray

hits

• Solution: the bounding boxes can be built in a hierarchical way

• Two popular hierarchical methods:
o Bounding volume hierarchy (BVH)

o Kd-tree

Ray

Bounding box

Bounding Volume Hierarchy
• Step 1. Compute a bounding box of primitives

o e.g., Axis-Aligned Bounding Box (AABB) 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑥𝑥𝑚𝑚𝑎𝑎𝑎𝑎, 𝑦𝑦𝑚𝑚𝑎𝑎𝑎𝑎, 𝑧𝑧𝑚𝑚𝑎𝑎𝑎𝑎

• Step 2. Split the primitives into two groups and compute the child BVs

• Step 3. Go to Step 1 until the number of primitives < k

Bounding Volume Hierarchy
• Step 1. Compute a bounding box of primitives

o e.g., Axis-Aligned Bounding Box (AABB) 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑥𝑥𝑚𝑚𝑎𝑎𝑎𝑎, 𝑦𝑦𝑚𝑚𝑎𝑎𝑎𝑎, 𝑧𝑧𝑚𝑚𝑎𝑎𝑎𝑎

• Step 2. Split the primitives into two groups and compute the child BVs

• Step 3. Go to Step 1 until the number of primitives < k

Bounding Volume Hierarchy
• Step 1. Compute a bounding box of primitives

o e.g., Axis-Aligned Bounding Box (AABB) 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑥𝑥𝑚𝑚𝑎𝑎𝑎𝑎, 𝑦𝑦𝑚𝑚𝑎𝑎𝑎𝑎, 𝑧𝑧𝑚𝑚𝑎𝑎𝑎𝑎

• Step 2. Split the primitives into two groups and compute the child BVs

• Step 3. Go to Step 1 until the number of primitives < k

Bounding Volume Hierarchy
• Where should we split the primitives?

o Midpoint of a volume

o Sort the primitives, and select the median

o Other approaches?
 Surface Area Heuristic (SAH)

Bounding Volume Hierarchy
• Traversal procedure:

o Check whether the intersection occurs

o If (hit and t < ray.t) then
 If (the BV is a leaf node)

 Find the closest intersection point between
the ray and triangle

 If (the ray hits triangles) then

 ray.t = t (from the closest intersection)

 Store some shading info.

 else

 Check an intersection using its child BVs

Bounding Volume Hierarchy
• Properties of BVH

o Object partitioning: split primitives

o Some BVs can overlap each other

Kd-trees
• Recursively split space with axis-aligned planes

Kd-trees
• Recursively split space with axis-aligned planes

Kd-trees
• Recursively split space with axis-aligned planes

Kd-trees
• Recursively split space with axis-aligned planes

o Some nodes can point same triangles if we cannot split
them

Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a ray and
triangle is found

Current node: N1

Stack:

N1

N2 N3

N4 N5 N6 N7

N8 N9

Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a
ray and triangle is found

Current node: N2

Stack: N3

N1

N2 N3

N4 N5 N6 N7

N8 N9

Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a
ray and triangle is found

Current node: N3

Stack:

N1

N2 N3

N4 N5 N6 N7

N8 N9

Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a
ray and triangle is found

Current node: N7

Stack: N6

N1

N2 N3

N4 N5 N6 N7

N8 N9

N9

Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a
ray and triangle is found

Current node:

Stack: N6

N1

N2 N3

N4 N5 N6 N7

N8

Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a
ray and triangle is found

Current node: N6

Stack:

N1

N2 N3

N4 N5 N6 N7

N8 N9

Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a
ray and triangle is found

Current node: N8

Stack: N9

N1

N2 N3

N4 N5 N6 N7

N8 N9

Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a
ray and triangle is found

Current node: (hit and finish)

Stack: N9

N1

N2 N3

N4 N5 N6 N7

N8 N9

Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a
ray and triangle is found

• What’s difference compared to the traversal on BVH?

Current node: (hit and finish)

Stack: N9

N1

N2 N3

N4 N5 N6 N7

N8 N9

Other Structures
• Uniform grids

o Partition the whole space into equal-size cells

• Binary space partition (BSP) tree
o Recursively split space with planes (arbitrary

orientations)

o Kd-tree is a special case of BSP tree: it uses an axis-
aligned plane for partitioning

• Octree
o Recursively split space but each inner node has 8

equal-size voxels

Discussion Points
• Axis-aligned bounding box (AABB)?

o Cheap to compute the intersection

o Bounding box may be too loose

o Oriented bound box (OBB) can be better to fit objects, but this requires more complex
computations

o Other shapes (e.g., sphere) can be utilized

o What’s the ideal bounding volume?

Discussion Points
• What’s the best hierarchy?

o Usually need to consider the following:
 Pre-processing time (construction)

 Run-time (rendering)

 Memory to save all the nodes

o Deformable objects can require run-time constructions

o Hybrid?
 Maintain two-level hierarchy

 e.g., top-level: grids, low-level: kd-tree

Further Readings
• Chapter 12

	Acceleration Data Structures
	Ray Tracing
	Naïve Ray Tracing
	Spatial Data Structures
	Bounding Boxes
	Bounding Boxes
	Bounding Boxes
	Bounding Boxes
	Bounding Boxes
	Bounding Boxes
	Bounding Boxes
	Hierarchical Bounding Boxes
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Kd-trees
	Kd-trees
	Kd-trees
	Kd-trees
	Kd-trees
	Kd-trees
	Kd-trees
	Kd-trees
	Kd-trees
	Kd-trees
	Kd-trees
	Kd-trees
	Kd-trees
	Other Structures
	Discussion Points
	Discussion Points
	Further Readings

