Lecture slides (CT4201/EC4215 - Computer Graphics)

Acceleration Data Structures

Lecturer: Bochang Moon

Ray Tracing

- Procedure for Ray Tracing:
- For each pixel
o Generate a primary ray (with depth 0)
o While (depth < d) \{
- Find the closest intersection point between the ray and objects
- If (there is a hit) then
- Generate a shadow ray
- If (there is no hit between the shadow ray and a light) then
- Perform a shading
- Generate a secondary ray (reflection or refraction ray) // increase the ray depth +1
- Else
- Perform a shading with background color \}
o Return background color

Computer Graphics
Laboratory

Naïve Ray Tracing

- Problem: find the closest intersection point between the ray $\boldsymbol{p}(t)=\boldsymbol{e}+t \boldsymbol{d}$
- For each triangle
o Compute the intersection point (i.e., t) between a ray and triangle
O If (there is a hit and t < stored t)
- Store shading information and the ray parameter t
o Return the shading information
- The complexity of this naïve algorithm is $\mathrm{O}(\mathrm{N})$, where N is the number of triangles in the scene

Spatial Data Structures

- Group objects together into a hierarchy to accelerate the geometry processing
- The complexity using the acceleration data structures can be a sub-linear time (e.g., O(logN))
- Object partitioning:
o Bounding Volume Hierarchy (BVH)
- Space partitioning:
o Uniform Grids
o Octree (3D) or QuadTree (2D)
o Binary space partition tree (BSP)
o kD-Trees

Bounding Boxes

- The key operation is to perform an intersection test between a ray and bounding box
o Need to know only whether a ray hits the box or not

Bounding box

Ray

- Ray: $\boldsymbol{p}(t)=\boldsymbol{e}+t \boldsymbol{d}$
- 2D version
$\mathrm{o}(x, y) \in\left[x_{\min }, x_{\max }\right] \times\left[y_{\text {min }}, y_{\max }\right]$

Bounding Boxes

- Ray: $\boldsymbol{p}(t)=\boldsymbol{e}+t \boldsymbol{d}$
- 2D version

O $(x, y) \in\left[x_{\min }, x_{\max }\right] \times\left[y_{\text {min }}, y_{\max }\right]$

- $t_{x \min }=\frac{x_{\min }-x_{e}}{x_{d}}$
- $t_{x \max }=\frac{x_{\max }-x_{e}}{x_{d}}$
- $t_{y \min }=\frac{y_{\min }-y_{e}}{y_{d}}$
- $t_{y \max }=\frac{y_{\max }-y_{e}}{y_{d}}$

Computer Graphics
Laboratory

Bounding Boxes

- Ray: $\boldsymbol{p}(t)=\boldsymbol{e}+t \boldsymbol{d}$
- $t_{x \min }=\frac{x_{\min }-x_{e}}{x_{d}}, t_{x \max }=\frac{x_{\max }-x_{e}}{x_{d}}$
- $t_{y \min }=\frac{y_{\min }-y_{e}}{y_{d}}, t_{y \max }=\frac{y_{\max }-y_{e}}{y_{d}}$
- $t \in\left[t_{x \min }, t_{x \max }\right]$
- $t \in\left[t_{y \min }, t_{y \max }\right]$
- $t \in\left[t_{x \min }, t_{x \max }\right] \cap\left[t_{y \min }, t_{y \max }\right]$

- A ray hits the box if and only if the two intervals overlap.

Bounding Boxes

- Procedure for testing the intersection
o Compute $t_{x \min }, t_{x \max }, t_{y \min }, t_{y \max }$
O If $\left(t_{x \min }>t_{y \max }\right.$ or $\left.t_{x \max }<t_{y \min }\right)$
- No hit
o else
- Hit

Bounding Boxes

- Negative x_{d} or y_{d} :
- A ray will hit $x_{\max }\left(\right.$ or $\left.y_{\max }\right)$ before it hits $x_{\min }\left(\right.$ or $\left.y_{\min }\right)$
- If $\left(x_{d} \geq 0\right)$ then
- $t_{\text {min }}=\left(x_{\text {min }}-x_{e}\right) / x_{d}$
- $t_{\text {max }}=\left(x_{\text {max }}-x_{e}\right) / x_{d}$

O else

- $t_{\text {min }}=\left(x_{\text {max }}-x_{e}\right) / x_{d}$
- $t_{\text {max }}=\left(x_{\text {min }}-x_{e}\right) / x_{d}$
- If $\left(y_{d} \geq 0\right)$ then
- $t_{\text {min }}=\left(y_{\text {min }}-y_{e}\right) / y_{d}$
- $t_{\max }=\left(y_{\max }-y_{e}\right) / y_{d}$

O else

- $t_{\text {min }}=\left(y_{\text {max }}-y_{e}\right) / y_{d}$
- $t_{\text {max }}=\left(y_{\text {min }}-y_{e}\right) / y_{d}$

Bounding Boxes

- Zero x_{d} or y_{d} :
o Divide-by-zero issue
- Given a number $a \in \mathbb{R}^{+}$, IEEE floating point rules provide the following:
o $\frac{+a}{+0}=\infty$
- $\frac{-a}{+0}=-\infty$
$0\left[t_{x \min }, t_{x \max }\right]=[-\infty,-\infty],[\infty, \infty]$: no hit
o $\left[t_{x \min }, t_{x \max }\right]=[-\infty, \infty]$: hit
o The precious code works for +0 denominator
- How about -0 denominator?
o We can test a reciprocal of the ray direction (e.g., $1 / x_{d}$)

Computer Graphics
Laboratory

Bounding Boxes

- -0 denominator?
o If $\left(x_{d} \geq 0\right)$ then
- $t_{\text {min }}=\left(x_{\text {min }}-x_{e}\right) / x_{d}$
- $t_{\max }=\left(x_{\max }-x_{e}\right) / x_{d}$
o else
- $t_{\text {min }}=\left(x_{\text {max }}-x_{e}\right) / x_{d}$
- $t_{\text {max }}=\left(x_{\text {min }}-x_{e}\right) / x_{d}$
- Problem: the first if statements will be true because $-0=0$ is true (IEEE floating point standard), so we can miss valid hits.

O A remedy is test a reciprocal of the ray direction (e.g., $1 / x_{d}$) instead of x_{d}
o More detail:

- An Efficient and Robust Ray-Box Intersection Algorithm, Williams et al. 2005

Computer Graphics
Laboratory

Hierarchical Bounding Boxes

- Motivation: expensive as we need to test all primitives within a bounding box that a ray hits
- Solution: the bounding boxes can be built in a hierarchical way
- Two popular hierarchical methods:
o Bounding volume hierarchy (BVH)
o Kd-tree
Bounding box

Bounding Volume Hierarchy

- Step 1. Compute a bounding box of primitives
o e.g., Axis-Aligned Bounding Box (AABB) $\left[x_{\text {min }}, y_{\text {min }}, z_{\text {min }}\right] \times\left[x_{\text {max }}, y_{\text {max }}, z_{\text {max }}\right]$
- Step 2. Split the primitives into two groups and compute the child BVs
- Step 3. Go to Step 1 until the number of primitives $<\mathrm{k}$

Bounding Volume Hierarchy

- Step 1. Compute a bounding box of primitives
o e.g., Axis-Aligned Bounding Box (AABB) $\left[x_{\text {min }}, y_{\text {min }}, z_{\text {min }}\right] \times\left[x_{\text {max }}, y_{\text {max }}, z_{\text {max }}\right]$
- Step 2. Split the primitives into two groups and compute the child BVs
- Step 3. Go to Step 1 until the number of primitives $<\mathrm{k}$

Bounding Volume Hierarchy

- Step 1. Compute a bounding box of primitives
o e.g., Axis-Aligned Bounding Box (AABB) $\left[x_{\text {min }}, y_{\text {min }}, z_{\text {min }}\right] \times\left[x_{\text {max }}, y_{\text {max }}, z_{\text {max }}\right]$
- Step 2. Split the primitives into two groups and compute the child BVs
- Step 3. Go to Step 1 until the number of primitives $<\mathrm{k}$

Bounding Volume Hierarchy

- Where should we split the primitives?
o Midpoint of a volume
o Sort the primitives, and select the median
o Other approaches?
- Surface Area Heuristic (SAH)

Bounding Volume Hierarchy

- Traversal procedure:
o Check whether the intersection occurs
o If (hit and t < ray.t) then
- If (the BV is a leaf node)
- Find the closest intersection point between the ray and triangle
- If (the ray hits triangles) then
- ray.t $=\mathrm{t}$ (from the closest intersection)
- Store some shading info.
- else
- Check an intersection using its child BVs

Bounding Volume Hierarchy

- Properties of BVH
o Object partitioning: split primitives
o Some BVs can overlap each other

人紋

Kd-trees

- Recursively split space with axis-aligned planes

Kd-trees

- Recursively split space with axis-aligned planes

Kd-trees

- Recursively split space with axis-aligned planes

Kd-trees

- Recursively split space with axis-aligned planes
o Some nodes can point same triangles if we cannot split them

Kd-trees

- Traversal
o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a ray and triangle is found

Current node: N1

Stack:

Kd-trees

- Traversal
o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a ray and triangle is found

Current node: N2
Stack: N3

Kd-trees

- Traversal
o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a ray and triangle is found

Current node: N3

Stack:

Kd-trees

- Traversal
o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a ray and triangle is found

Current node: N7
Stack: N6

Kd-trees

- Traversal
o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a ray and triangle is found

Current node. ∇
Stack: N6

Kd-trees

- Traversal
o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a ray and triangle is found

Current node: N6

Stack:

Kd-trees

- Traversal
o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a ray and triangle is found

Current node: N8
Stack: N9

Kd-trees

- Traversal
o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a ray and triangle is found

Stack: N9

Kd-trees

- Traversal
o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a ray and triangle is found
- What's difference compared to the traversal on BVH?

Stack: N9

Other Structures

- Uniform grids
o Partition the whole space into equal-size cells
- Binary space partition (BSP) tree
o Recursively split space with planes (arbitrary orientations)

o Kd-tree is a special case of BSP tree: it uses an axisaligned plane for partitioning
- Octree
o Recursively split space but each inner node has 8 equal-size voxels

Discussion Points

- Axis-aligned bounding box (AABB)?
o Cheap to compute the intersection
o Bounding box may be too loose
o Oriented bound box (OBB) can be better to fit objects, but this requires more complex computations
o Other shapes (e.g., sphere) can be utilized
o What's the ideal bounding volume?

Discussion Points

- What's the best hierarchy?
o Usually need to consider the following:
- Pre-processing time (construction)
- Run-time (rendering)
- Memory to save all the nodes
o Deformable objects can require run-time constructions
o Hybrid?
- Maintain two-level hierarchy
- e.g., top-level: grids, low-level: kd-tree

Further Readings

- Chapter 12

