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Ray Tracing
• Procedure for Ray Tracing:

• For each pixel 
o Generate a primary ray (with depth 0)
o While (depth < d) {

 Find the closest intersection point between the ray and objects
 If (there is a hit) then

 Generate a shadow ray
 If (there is no hit between the shadow ray and a light) then

 Perform a shading
 Generate a secondary ray (reflection or refraction ray) // increase the ray depth +1

 Else
 Perform a shading with background color }

o Return background color



Naïve Ray Tracing
• Problem: find the closest intersection point between the ray 𝒑𝒑 𝑡𝑡 = 𝒆𝒆 + 𝑡𝑡𝒅𝒅

• For each triangle
o Compute the intersection point (i.e., t) between a ray and triangle
o If (there is a hit and t < stored t)

 Store shading information and the ray parameter t

o Return the shading information

• The complexity of this naïve algorithm is O(N), where N is the number of triangles in the scene



Spatial Data Structures
• Group objects together into a hierarchy to accelerate the geometry processing 

• The complexity using the acceleration data structures can be a sub-linear time (e.g., O(logN))

• Object partitioning:
o Bounding Volume Hierarchy (BVH)

• Space partitioning:
o Uniform Grids
o Octree (3D) or QuadTree (2D)
o Binary space partition tree (BSP)
o kD-Trees



Bounding Boxes
• The key operation is to perform an intersection 

test between a ray and bounding box
o Need to know only whether a ray hits the box or 

not 

• Ray: 𝒑𝒑 𝑡𝑡 = 𝒆𝒆 + 𝑡𝑡𝒅𝒅

• 2D version
o 𝑥𝑥, 𝑦𝑦 ∈ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

Ray

Bounding box



Bounding Boxes
• Ray: 𝒑𝒑 𝑡𝑡 = 𝒆𝒆 + 𝑡𝑡𝒅𝒅

• 2D version
o 𝑥𝑥, 𝑦𝑦 ∈ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

• 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑒𝑒
𝑥𝑥𝑑𝑑

• 𝑡𝑡𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑒𝑒
𝑥𝑥𝑑𝑑

• 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑒𝑒
𝑦𝑦𝑑𝑑

• 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑒𝑒
𝑦𝑦𝑑𝑑

𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦



Bounding Boxes
• Ray: 𝒑𝒑 𝑡𝑡 = 𝒆𝒆 + 𝑡𝑡𝒅𝒅

• 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑒𝑒
𝑥𝑥𝑑𝑑

,  𝑡𝑡𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑒𝑒
𝑥𝑥𝑑𝑑

• 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑒𝑒
𝑦𝑦𝑑𝑑

, 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑒𝑒
𝑦𝑦𝑑𝑑

• 𝑡𝑡 ∈ 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

• 𝑡𝑡 ∈ 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

• 𝑡𝑡 ∈ 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ∩ 𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, 𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

• A ray hits the box if and only if the two intervals overlap. 



Bounding Boxes
• Procedure for testing the intersection

o Compute 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, 𝑡𝑡𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
o If (𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 > 𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑜𝑜𝑜𝑜 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 < 𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)

 No hit

o else
 Hit



Bounding Boxes
• Negative 𝑥𝑥𝑑𝑑 or 𝑦𝑦𝑑𝑑:

o A ray will hit 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 (𝑜𝑜𝑜𝑜 𝑦𝑦max) before it hits 𝑥𝑥𝑚𝑚𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

o If (𝑥𝑥𝑑𝑑 ≥ 0) then

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑

 𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 = (𝑥𝑥𝑚𝑚𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑

o else 

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑥𝑥𝑚𝑚𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑥𝑥𝑚𝑚𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑

o If (𝑦𝑦𝑑𝑑 ≥ 0) then

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑒𝑒)/𝑦𝑦𝑑𝑑

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑒𝑒)/𝑦𝑦𝑑𝑑

o else 

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑒𝑒)/𝑦𝑦𝑑𝑑

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑒𝑒)/𝑦𝑦𝑑𝑑



Bounding Boxes
• Zero 𝑥𝑥𝑑𝑑 or 𝑦𝑦𝑑𝑑:

o Divide-by-zero issue

• Given a number 𝑎𝑎 ∈ ℝ+, IEEE floating point rules provide the following:

o +𝑎𝑎
+0

= ∞

o −𝑎𝑎
+0

= −∞

o 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = [−∞,−∞], [∞,∞]: no hit
o 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥,𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = −∞,∞ : hit
o The precious code works for +0 denominator

• How about -0 denominator?
o We can test a reciprocal of the ray direction (e.g., 1/𝑥𝑥𝑑𝑑)



Bounding Boxes
• -0 denominator?

o If (𝑥𝑥𝑑𝑑 ≥ 0) then

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑
 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑

o else 

 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑
 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑒𝑒)/𝑥𝑥𝑑𝑑

• Problem: the first if statements will be true because −0 == 0 is true (IEEE floating point standard), so we can miss valid hits.
o A remedy is test a reciprocal of the ray direction (e.g., 1/𝑥𝑥𝑑𝑑) instead of 𝑥𝑥𝑑𝑑
o More detail:

 An Efficient and Robust Ray–Box Intersection Algorithm, Williams et al. 2005



Hierarchical Bounding Boxes
• Motivation: expensive as we need to test all primitives within a bounding box that a ray 

hits

• Solution: the bounding boxes can be built in a hierarchical way 

• Two popular hierarchical methods:
o Bounding volume hierarchy (BVH)

o Kd-tree

Ray

Bounding box



Bounding Volume Hierarchy 
• Step 1. Compute a bounding box of primitives

o e.g., Axis-Aligned Bounding Box (AABB) 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑥𝑥𝑚𝑚𝑎𝑎𝑎𝑎, 𝑦𝑦𝑚𝑚𝑎𝑎𝑎𝑎, 𝑧𝑧𝑚𝑚𝑎𝑎𝑎𝑎

• Step 2. Split the primitives into two groups and compute the child BVs

• Step 3. Go to Step 1 until the number of primitives < k



Bounding Volume Hierarchy 
• Step 1. Compute a bounding box of primitives

o e.g., Axis-Aligned Bounding Box (AABB) 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑥𝑥𝑚𝑚𝑎𝑎𝑎𝑎, 𝑦𝑦𝑚𝑚𝑎𝑎𝑎𝑎, 𝑧𝑧𝑚𝑚𝑎𝑎𝑎𝑎

• Step 2. Split the primitives into two groups and compute the child BVs

• Step 3. Go to Step 1 until the number of primitives < k



Bounding Volume Hierarchy 
• Step 1. Compute a bounding box of primitives

o e.g., Axis-Aligned Bounding Box (AABB) 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑥𝑥𝑚𝑚𝑎𝑎𝑎𝑎, 𝑦𝑦𝑚𝑚𝑎𝑎𝑎𝑎, 𝑧𝑧𝑚𝑚𝑎𝑎𝑎𝑎

• Step 2. Split the primitives into two groups and compute the child BVs

• Step 3. Go to Step 1 until the number of primitives < k



Bounding Volume Hierarchy 
• Where should we split the primitives?

o Midpoint of a volume

o Sort the primitives, and select the median

o Other approaches?
 Surface Area Heuristic (SAH)



Bounding Volume Hierarchy 
• Traversal procedure:

o Check whether the intersection occurs

o If (hit and t < ray.t) then
 If (the BV is a leaf node)

 Find the closest intersection point between 
the ray and triangle

 If (the ray hits triangles) then

 ray.t = t (from the closest intersection)

 Store some shading info.

 else

 Check an intersection using its child BVs 



Bounding Volume Hierarchy 
• Properties of BVH

o Object partitioning: split primitives

o Some BVs can overlap each other



Kd-trees
• Recursively split space with axis-aligned planes



Kd-trees
• Recursively split space with axis-aligned planes



Kd-trees
• Recursively split space with axis-aligned planes



Kd-trees
• Recursively split space with axis-aligned planes

o Some nodes can point same triangles if we cannot split 
them



Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a ray and 
triangle is found

Current node: N1

Stack:

N1

N2 N3

N4 N5 N6 N7

N8 N9



Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a 
ray and triangle is found

Current node: N2

Stack: N3

N1

N2 N3

N4 N5 N6 N7

N8 N9



Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a 
ray and triangle is found

Current node: N3

Stack:

N1

N2 N3

N4 N5 N6 N7

N8 N9



Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a 
ray and triangle is found

Current node: N7

Stack: N6

N1

N2 N3

N4 N5 N6 N7

N8 N9



N9

Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a 
ray and triangle is found

Current node:

Stack: N6

N1

N2 N3

N4 N5 N6 N7

N8



Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a 
ray and triangle is found

Current node: N6

Stack:

N1

N2 N3

N4 N5 N6 N7

N8 N9



Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a 
ray and triangle is found

Current node: N8

Stack: N9

N1

N2 N3

N4 N5 N6 N7

N8 N9



Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a 
ray and triangle is found

Current node:        (hit and finish)

Stack: N9

N1

N2 N3

N4 N5 N6 N7

N8 N9



Kd-trees
• Traversal

o Front-to-back traversal: traverse child nodes in order along a ray

o Can terminate traversal as soon as an intersection between a 
ray and triangle is found

• What’s difference compared to the traversal on BVH?

Current node:        (hit and finish)

Stack: N9

N1

N2 N3

N4 N5 N6 N7

N8 N9



Other Structures
• Uniform grids

o Partition the whole space into equal-size cells

• Binary space partition (BSP) tree 
o Recursively split space with planes (arbitrary 

orientations)

o Kd-tree is a special case of BSP tree: it uses an axis-
aligned plane for partitioning

• Octree 
o Recursively split space but each inner node has 8 

equal-size voxels



Discussion Points
• Axis-aligned bounding box (AABB)?

o Cheap to compute the intersection 

o Bounding box may be too loose

o Oriented bound box (OBB) can be better to fit objects, but this requires more complex 
computations

o Other shapes (e.g., sphere) can be utilized

o What’s the ideal bounding volume?



Discussion Points
• What’s the best hierarchy?

o Usually need to consider the following:
 Pre-processing time (construction)

 Run-time (rendering)

 Memory to save all the nodes 

o Deformable objects can require run-time constructions

o Hybrid?
 Maintain two-level hierarchy 

 e.g., top-level: grids, low-level: kd-tree



Further Readings
• Chapter 12
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