Lecture slides (CT4201/EC4215 - Computer Graphics)

Culling

Lecturer: Bochang Moon

Culling

- An optimization process that removes invisible geometry to speed up rendering
- Three types of culling
o View volume culling
o Occlusion culling
o Back-face culling

View Volume Culling

- A process to remove geometry that is outside the view volume
- Q. why do we need to do this culling?
- Q. how do we efficiently identify the object that is totally outside of the volume?

Screen space

View Volume Culling

- A process to remove geometry that is outside the view volume
- Q. why do we need to do this culling?

Modeling transformation

Viewing transformation

Projection Transformation

Screen space

Viewport Transformation

World space

Canonical view volume (normalized device coordinates)

View Volume Culling

- A process to remove geometry that is outside the view volume
- Q. how do we efficiently identify the object that is totally outside of the volume?

O A bounding volume can be utilized. Why?

Screen space

View Volume Culling

- Simple bounding volumes
o Bounding box

- e.g., axis-aligned bounding box (AABB)
o Bounding sphere

View Volume Culling

- Need identify the three cases

inside

intermediate

Background: Implicit Functions

- 2D implicit curves

- 3D implicit surfaces
o $f(x, y, z)=0$

Background: Implicit Functions

- Infinite plane through point a with surface normal \mathbf{n}
$\bigcirc(\boldsymbol{p}-\boldsymbol{a}) \cdot \boldsymbol{n}=0$
o The surface normal \mathbf{n} is a vector perpendicular to the plane.
O When a point \boldsymbol{p} is on the plane, $(\boldsymbol{p}-\boldsymbol{a}) \cdot \boldsymbol{n}$ will be zero.
- Recall the definition of a dot product
- $\boldsymbol{a} \cdot \boldsymbol{b}=\|\boldsymbol{a}\|\| \| \boldsymbol{b} \| \cos \theta$

View Volume Culling

- We can check the following:

○ $\frac{(\boldsymbol{c}-\boldsymbol{a}) \cdot \boldsymbol{n}}{\|\boldsymbol{n}\|}>r$
O c: center of the bounding sphere
or: radius of the sphere
O Q. what's the geometric meaning of $\frac{(c-a) \cdot n}{\|n\|}$?

Computer Graphics
Laboratory

Background: Dot Product

- Vector multiplications

O Dot product (scalar product)

- $\boldsymbol{a} \cdot \boldsymbol{b}=\|\boldsymbol{a}\|\|\boldsymbol{b}\| \cos \theta$
- Usage: $(\boldsymbol{a} \rightarrow \boldsymbol{b})$ projection of a vector to another one
- $a \rightarrow b=\|\boldsymbol{a}\| \cos \theta=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\|\boldsymbol{b}\|}$
- Note: this is the length of the projected vector onto \mathbf{b}

O Dot product in Cartesian coordinates

- Properties: $\boldsymbol{x} \cdot \boldsymbol{x}=\boldsymbol{y} \cdot \boldsymbol{y}=1$ and $\boldsymbol{x} \cdot \boldsymbol{y}=0$
- $\boldsymbol{a} \cdot \boldsymbol{b}=\left(x_{a} \boldsymbol{x}+y_{a} \boldsymbol{y}\right) \cdot\left(x_{b} \boldsymbol{x}+y_{b} \boldsymbol{y}\right)$
- $\quad=x_{a} x_{b}(\boldsymbol{x} \cdot \boldsymbol{x})+x_{a} y_{b}(\boldsymbol{x} \cdot \boldsymbol{y})+x_{b} y_{a}(\boldsymbol{y} \cdot \boldsymbol{x})+y_{a} y_{b}(\boldsymbol{y} \cdot \boldsymbol{y})$
- $\quad=x_{a} x_{b}+y_{a} y_{b}$
- In 3D,
- $\boldsymbol{a} \cdot \boldsymbol{b}=x_{a} x_{b}+y_{a} y_{b}+z_{a} z_{b}$

View Volume Culling

- Need identify the three cases

inside

$$
\frac{(\boldsymbol{c}-\boldsymbol{a}) \cdot \boldsymbol{n}}{\|\boldsymbol{n}\|}<-r
$$

intermediate

$$
-r<\frac{(\boldsymbol{c}-\boldsymbol{a}) \cdot \boldsymbol{n}}{\|\boldsymbol{n}\|}<r
$$

$\frac{(c-a) \cdot n}{\|n\|}>r$

View Volume Culling

- Q. can we optimize our pipeline further?

intermediate

$$
-r<\frac{(\boldsymbol{c}-\boldsymbol{a}) \cdot \boldsymbol{n}}{\|\boldsymbol{n}\|}<r
$$

Hierarchical Culling

- If a bounding volume is intermediate,
o Check its left and right children

Back-Face Culling

- If the angle between the view and normal is within a range (-90 to 90 degrees), the triangle is visible.
$o \cos \theta \geq 0$

Back-Face Culling

- If the angle between the view and normal is within a range (-90 to 90 degrees), the triangle is visible.
o $\cos \theta \geq 0$
○ $\boldsymbol{e} \cdot \boldsymbol{n} \geq 0$
o Dot product
- $\boldsymbol{a} \cdot \boldsymbol{b}=\|\boldsymbol{a}\|| | \boldsymbol{b} \| \cos \theta$

Back-Face Culling

- Assumption for the back-face culling:
o Models are closed (i.e., no holes).

Further Readings

- Chapter 2.5
- Chapter 8.4 and 12

