Lecture slides (CT4201/EC4215 - Computer Graphics)

Viewing Transformation

Lecturer: Bochang Moon

Viewing Transformation

Illumination

Rasterization \downarrow Display

- Transform all points from world space to eye space
- Camera position transforms into the origin

Viewing Transformation

- Define camera position and its orientation
- Specify the following:
o Location of the camera, $\boldsymbol{e}=\left(x_{e}, y_{e}, z_{e}\right)$
o Direction where the camera is aiming at, vector $\boldsymbol{g}=\left(x_{g}, y_{g}, z_{g}\right)$
o Upward direction of the camera, vector $\boldsymbol{t}=\left(x_{t}, y_{t}, z_{t}\right)$
- Roughly orthogonal to \boldsymbol{g} (not necessary)
- A user specifies these variables.
- These variables are defined in world space.

Viewing Transformation

- Our task: transform all points defined in world space into new points in eye space
- Need to build a coordinate system (eye space) from the specifications of the camera

Viewing Transformation

- Our task: transform all points defined in world space into new points in eye space
- Need to build a coordinate system (eye space) from the specifications of the camera
o Construct basis vectors from two input vectors
o $\boldsymbol{w}=-\frac{g}{\|g\|}$
○ $\boldsymbol{u}=\frac{t \times w}{\|t \times w\|}$
○ $\boldsymbol{v}=\boldsymbol{w} \times \boldsymbol{u}$

Viewing Transformation in OpenGL

- void gluLookAt(GLdouble eyeX, GLdouble eyeY, GLdouble eyeZ,
- GLdouble centerX, GLdouble centerY, GLdouble centerZ,
- GLdouble upX, GLdouble upY, GLdouble upZ);
- Parameters

O eyeX, eyeY, eyeZ

- Specifies the position of the camera
o centerX, centerY, centerZ
- Specifies the position of the reference point that your camera is looking at
o upX, upY, upZ
- Specifies the direction of the up vector
- Issue: centerX, centerY, centerZ is not the gaze vector g. How can we compute this?

Viewing Transformation in OpenGL

- This can be considered as the following matrix transformations:
o Step 1: translate the camera position e to the origin in world space
o Step 2: rotate $\mathbf{u}, \mathbf{v}, \mathbf{w}$ to be aligned to $\mathbf{x}, \mathbf{y}, \mathbf{z}$
- $\boldsymbol{M}_{\text {view }}=\left[\begin{array}{cccc}\boldsymbol{u} & \boldsymbol{v} & \boldsymbol{w} & \boldsymbol{e} \\ 0 & 0 & 0 & 1\end{array}\right]^{-1}$
- $=\left[\begin{array}{cccc}x_{u} & y_{u} & z_{u} & 0 \\ x_{v} & y_{v} & z_{v} & 0 \\ x_{w} & y_{w} & z_{w} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & -x_{e} \\ 0 & 1 & 0 & -y_{e} \\ 0 & 0 & 1 & -z_{e} \\ 0 & 0 & 0 & 1\end{array}\right]$
(why?)

