
Lecturer: Bochang Moon

Homogeneous Coordinates
Lecture slides (CT4201/EC4215 – Computer Graphics)

1



2D Translation
• Transformations such as rotation and scale can be represented using a matrix M

o 𝑒𝑒.𝑔𝑔., 𝑀𝑀 = 𝑆𝑆𝑆𝑆
o 𝑥𝑥′ = 𝑚𝑚11𝑥𝑥 + 𝑚𝑚12𝑦𝑦
o 𝑦𝑦′ = 𝑚𝑚21𝑥𝑥 + 𝑚𝑚22𝑦𝑦

• How about translation?
o 𝑥𝑥′ = 𝑥𝑥 + 𝑥𝑥𝛿𝛿
o 𝑦𝑦′ = 𝑦𝑦 + 𝑦𝑦𝛿𝛿
o No way to express this using a 2 x 2 matrix



Homogeneous Coordinates
• Affine transformation 

o Preserve points, straight lines, and planes after a transformation
o e.g., scale, rotation, translation, reflect, shear

• Represent the point (x, y) by a 3D vector 𝑥𝑥,𝑦𝑦, 1 𝑡𝑡

o Add an extra dimension 

• Use the following matrix form to implement affine transformations

• 𝑀𝑀 =
𝑚𝑚11 𝑚𝑚12 𝑥𝑥𝛿𝛿
𝑚𝑚21 𝑚𝑚22 𝑦𝑦𝛿𝛿

0 0 1



Homogeneous Coordinates
• Compactly represent multiple affine transformations (including translations) with a 

matrix 

• e.g., 2D translation

o
1 0 𝑥𝑥𝛿𝛿
0 1 𝑦𝑦𝛿𝛿
0 0 1

𝑥𝑥
𝑦𝑦
1

=
𝑥𝑥 + 𝑥𝑥𝛿𝛿
𝑦𝑦 + 𝑦𝑦𝛿𝛿

1

• e.g., rotation after 2D translation

o 𝑀𝑀 =
𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 −𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜 0
𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 0

0 0 1

1 0 𝑥𝑥𝛿𝛿
0 1 𝑦𝑦𝛿𝛿
0 0 1



Examples
• Problem specification: move a 2D rectangle into a new position

y

x

(𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙)

(𝑥𝑥ℎ,𝑦𝑦ℎ) y

x

(𝑥𝑥𝑙𝑙′,𝑦𝑦𝑙𝑙′)

(𝑥𝑥ℎ′ ,𝑦𝑦ℎ′ )



Examples
• Problem specification: move a 2D rectangle into a new position

o Step1. translate: move the point 𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙 to the origin

y

x

(𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙)

(𝑥𝑥ℎ,𝑦𝑦ℎ) y

x

(𝑥𝑥ℎ − 𝑥𝑥𝑙𝑙 ,𝑦𝑦ℎ − 𝑦𝑦𝑙𝑙)



Examples
• Problem specification: move a 2D rectangle into a new position

o Step2. scale: resize the rectangle to be the same size of the target.

y

x

y

x

(𝑥𝑥ℎ − 𝑥𝑥𝑙𝑙 ,𝑦𝑦ℎ − 𝑦𝑦𝑙𝑙)
(𝑥𝑥ℎ′ − 𝑥𝑥𝑙𝑙′,𝑦𝑦ℎ′ − 𝑦𝑦𝑙𝑙′)



Examples
• Problem specification: move a 2D rectangle into a new position

o Step3. translate: move the origin to point (𝑥𝑥𝑙𝑙′,𝑦𝑦𝑙𝑙′)

y

x

y

x

(𝑥𝑥ℎ′ − 𝑥𝑥𝑙𝑙′,𝑦𝑦ℎ′ − 𝑦𝑦𝑙𝑙′)

(𝑥𝑥𝑙𝑙′,𝑦𝑦𝑙𝑙′)

(𝑥𝑥ℎ′ ,𝑦𝑦ℎ′ )



Examples
• Problem specification: move a 2D rectangle into a new position

o Target = translate(𝑥𝑥𝑙𝑙′,𝑦𝑦𝑙𝑙′) 𝑜𝑜𝑐𝑐𝑠𝑠𝑠𝑠𝑒𝑒
𝑥𝑥ℎ
′ −𝑥𝑥𝑙𝑙

′

𝑥𝑥ℎ−𝑥𝑥𝑙𝑙
, 𝑦𝑦ℎ

′−𝑦𝑦𝑙𝑙
′

𝑦𝑦ℎ−𝑦𝑦𝑙𝑙
𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑡𝑡𝑒𝑒(−𝑥𝑥𝑙𝑙 ,−𝑦𝑦𝑙𝑙)

o =
1 0 𝑥𝑥𝑙𝑙′

0 1 𝑦𝑦𝑙𝑙′
0 0 1

𝑥𝑥ℎ
′ −𝑥𝑥𝑙𝑙

′

𝑥𝑥ℎ−𝑥𝑥𝑙𝑙
0 0

0 𝑦𝑦ℎ
′−𝑦𝑦𝑙𝑙

′

𝑦𝑦ℎ−𝑦𝑦𝑙𝑙
0

0 0 1

1 0 −𝑥𝑥𝑙𝑙
0 1 −𝑦𝑦𝑙𝑙
0 0 1

o =

𝑥𝑥ℎ
′ −𝑥𝑥𝑙𝑙

′

𝑥𝑥ℎ−𝑥𝑥𝑙𝑙
0 𝑥𝑥𝑙𝑙

′𝑥𝑥ℎ−𝑥𝑥ℎ
′ 𝑥𝑥𝑙𝑙

𝑥𝑥ℎ−𝑥𝑥𝑙𝑙

0 𝑦𝑦ℎ
′−𝑦𝑦𝑙𝑙

′

𝑦𝑦ℎ−𝑦𝑦𝑙𝑙

𝑦𝑦𝑙𝑙
′𝑦𝑦ℎ−𝑦𝑦ℎ

′𝑦𝑦𝑙𝑙
𝑦𝑦ℎ−𝑦𝑦𝑙𝑙

0 0 1



Rigid-body Transformation
• A transformation that preserves distances between every pair of points

o Are composed only of translations and rotations

o i.e., no stretching or shrinking of the objects



Discussion 
• Homogenous coordinates are common for graphics applications. Why?

• A naïve way of implementing translations is to move the positions directly without 

forming a matrix



3D Transformation
• Extension of 2D transformation

• Why 3D transformation?
o You virtual world is a 3D world.

o 3D transformations are fundamental units to form your virtual scene.



OpenGL 3D coordinate
• Right-hand Coordinate System (RHS)

o Counter-clockwise

z

y

x
(0,0,0)



3D Transformation (scale)

• 𝑜𝑜𝑐𝑐𝑠𝑠𝑠𝑠𝑒𝑒 𝑜𝑜𝑥𝑥, 𝑜𝑜𝑦𝑦, 𝑜𝑜𝑧𝑧 =
𝑜𝑜𝑥𝑥 0 0
0 𝑜𝑜𝑦𝑦 0
0 0 𝑜𝑜𝑧𝑧

• Representation with homogeneous coordinates

o

𝑜𝑜𝑥𝑥 0
0 𝑜𝑜𝑦𝑦

0 0
0 0

0 0
0 0

𝑜𝑜𝑧𝑧 0
0 1



3D Transformation (translation)

• 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑡𝑡𝑒𝑒(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
1 0
0 1

0 𝑥𝑥
0 𝑦𝑦

0 0
0 0

1 𝑧𝑧
0 1



3D Transformation (rotation)
• 𝑡𝑡𝑜𝑜𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒 − 𝑧𝑧 𝑜𝑜 =

𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 −𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜 0
𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 0

0 0 1

• 𝑡𝑡𝑜𝑜𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒 − 𝑦𝑦 𝑜𝑜 =
𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 0 𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜

0 1 0
−𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜 0 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜

• 𝑡𝑡𝑜𝑜𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒 − 𝑥𝑥 𝑜𝑜 =
1 0 0
0 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 −𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜
0 𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜

• Representation with homogeneous coordinates

• 𝑡𝑡𝑜𝑜𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒 − 𝑧𝑧 𝑜𝑜 =
𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 −𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜
𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜

0 0
0 0

0 0
0 0

1 0
0 1



3D Transformation (rotation)
• 2D, 3D rotations are orthogonal matrices.

o Rows of the matrix are mutually orthogonal unit vectors

• Need some background on vectors…



Background: Vector
• A vector describes a length and a direction

o Commonly drawn by an arrow



Background: Vector
• A vector describes a length and a direction

• Notations: a (bold character)
o Other ways? e.g., �⃗�𝑠

• Length of a vector
o ∥ a ∥

• Unit vector
o A vector a if ∥ a ∥ = 1

• Zero vector
o A vector a if ∥ a ∥ = 0

• Two vectors are equal if and only if they have the same length and direction.



Background: Vector
• Vector addition: Parallelogram rule

• Properties
o 𝒂𝒂 + 𝒃𝒃 = 𝒃𝒃 + 𝒂𝒂 (commutative)

b

a

a+b

b

a

a+b



Background: Vector
• Unary minus of a vector a

o -𝒂𝒂

• Subtraction
o 𝒃𝒃 − 𝒂𝒂 ≡ −𝒂𝒂 + 𝒃𝒃

• Scale
o k 𝒂𝒂

a

a

b-a

b

-a

a 0.5a



Background: Basis Vector
• A 2D vector can be written as a combination of any two nonzero vectors which are not parallel 

(linear independence)
o Two linearly independent vectors (basis vectors) form a 2D basis

• e.g., 𝒄𝒄 = 𝑠𝑠𝑐𝑐𝒂𝒂 + 𝑏𝑏𝑐𝑐𝒃𝒃
o Weights are unique

a

b c

2a

0.5b



Background: Basis Vector
• A 2D vector can be written as a combination of any two nonzero vectors which are not 

parallel (linear independence)
o Two linearly independent vectors (basis vectors) form a 2D basis

• Orthogonality
o Two vectors are orthogonal if they are at right angles to each other

a

b



Background: Basis Vector
• A 2D vector can be written as a combination of any two nonzero vectors which are not parallel (linear 

independence)
o Two linearly independent vectors (basis vectors) form a 2D basis

• Special cases
o Two vectors are orthogonal if they are at right angles to each other
o Two vectors are orthonormal if they are orthogonal and unit vectors

o Note: the special vectors can be used to represent all other vectors in a Cartesian coordinate system
 A coordinate system that specifies each point uniquely

x

y

x

y
∥ x ∥ =∥ y ∥ = 1



Background: Cartesian Coordinate System

• Special cases
o Two vectors are orthogonal if they are at right angles to each other

o Two vectors are orthonormal if they are orthogonal and unit vectors

o Note: the special orthonormal vector can be used to represent all other vectors in a Cartesian 
coordinate system
 A coordinate system that specifies each point uniquely in a plane or 3D space by a pair of numerical 

components

 𝑒𝑒.𝑔𝑔., 𝒂𝒂 = 𝑥𝑥𝑎𝑎𝒙𝒙 + 𝑦𝑦𝑎𝑎𝒚𝒚

 𝑥𝑥𝑎𝑎 and 𝑦𝑦𝑎𝑎 are Cartesian coordinates of the 2D vector 𝒂𝒂

Image from wikipedia



Background: Cartesian Coordinate System

• Properties of a Cartesian coordinate system

o ∥ 𝒂𝒂 ∥= 𝑥𝑥𝑎𝑎2 + 𝑦𝑦𝑎𝑎2

o 𝒂𝒂 =
𝑥𝑥𝑎𝑎
𝑦𝑦𝑎𝑎

o 𝒂𝒂𝑻𝑻 = [𝑥𝑥𝑎𝑎 𝑦𝑦𝑎𝑎]

• 3D case
o 𝒂𝒂 = 𝑥𝑥𝑎𝑎𝒙𝒙 + 𝑦𝑦𝑎𝑎𝒚𝒚 + 𝑧𝑧𝑎𝑎𝒛𝒛
o x, y, z are orthonormal



Background: Dot Product
• Vector multiplications

o Dot product (scalar product)
 𝒂𝒂 � 𝒃𝒃 =∥ 𝒂𝒂 ∥∥ 𝒃𝒃 ∥ 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜

 Properties
 𝒂𝒂 � 𝒃𝒃 = 𝒃𝒃 � 𝐚𝐚 (commutative)
 𝒂𝒂 � 𝒃𝒃 + 𝒄𝒄 = 𝒂𝒂 � 𝒃𝒃 + 𝒂𝒂 � 𝒄𝒄 (distributive)
 𝑘𝑘𝒂𝒂 � 𝒃𝒃 = 𝒂𝒂 � 𝑘𝑘𝒃𝒃 = 𝑘𝑘𝒂𝒂 � 𝒃𝒃 (scalar multiplication)

 Orthogonal
 𝒂𝒂 � 𝒃𝒃 =∥ 𝒂𝒂 ∥∥ 𝒃𝒃 ∥ 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 = 0
 Two non-zero vectors a and b are orthogonal if and only if 𝒂𝒂 � 𝒃𝒃 = 0

a

b

𝑜𝑜



Background: Dot Product
• Vector multiplications

o Dot product (scalar product)

 𝒂𝒂 � 𝒃𝒃 =∥ 𝒂𝒂 ∥∥ 𝒃𝒃 ∥ 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜

 Usage: 𝒂𝒂 → 𝒃𝒃 projection of a vector to another one

 𝑠𝑠 → 𝑏𝑏 =∥ 𝒂𝒂 ∥ cos𝑜𝑜 = 𝒂𝒂�𝒃𝒃
∥𝒃𝒃∥

 Note: this is the length of the projected vector onto b

o Dot product in Cartesian coordinates
 Properties: 𝒙𝒙 � 𝒙𝒙 = 𝒚𝒚 � 𝒚𝒚 = 1 and 𝒙𝒙 � 𝒚𝒚 = 0

 𝒂𝒂 � 𝒃𝒃 = (𝑥𝑥𝑎𝑎𝒙𝒙 + 𝑦𝑦𝑎𝑎𝒚𝒚) � 𝑥𝑥𝑏𝑏𝒙𝒙 + 𝑦𝑦𝑏𝑏𝒚𝒚

 = 𝑥𝑥𝑎𝑎𝑥𝑥𝑏𝑏 𝒙𝒙 � 𝒙𝒙 + 𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏 𝒙𝒙 � 𝒚𝒚 + 𝑥𝑥𝑏𝑏𝑦𝑦𝑎𝑎 𝒚𝒚 � 𝒙𝒙 + 𝑦𝑦𝑎𝑎𝑦𝑦𝑏𝑏 𝒚𝒚 � 𝒚𝒚

 = 𝑥𝑥𝑎𝑎𝑥𝑥𝑏𝑏 + 𝑦𝑦𝑎𝑎𝑦𝑦𝑏𝑏
 In 3D,

 𝒂𝒂 � 𝒃𝒃 = 𝑥𝑥𝑎𝑎𝑥𝑥𝑏𝑏 + 𝑦𝑦𝑎𝑎𝑦𝑦𝑏𝑏 + 𝑧𝑧𝑎𝑎𝑧𝑧𝑏𝑏

a

b

𝑜𝑜



Background: Cross Product
• Vector multiplications

o Cross products (used only for 3D vectors)

 𝒂𝒂 × 𝒃𝒃 = ∥ 𝑠𝑠 ∥∥ 𝑏𝑏 ∥ 𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜 n

 n: unit vector that is perpendicular to 𝒂𝒂 and 𝒃𝒃

 Return a 3D vector that is perpendicular to the two arguments

 Two possible directions of the resulting vector

o Length of the resulting vector 

 ∥ 𝒂𝒂 × 𝒃𝒃 ∥= ∥ 𝒂𝒂 ∥∥ 𝒃𝒃 ∥ 𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜

 Equal to the area of the parallelogram formed by the two vectors 𝒂𝒂 and 𝒃𝒃

o Three Cartesian unit vectors

 𝒙𝒙 = 1,0,0

 𝒚𝒚 = 0,1,0

 𝒛𝒛 = 0,0,1

a

b

a x b

𝑜𝑜



Background: Cross Product
• Cross products of the unit vectors

o 𝒙𝒙 × 𝒚𝒚 = 𝒛𝒛
o 𝒚𝒚 × 𝒙𝒙 = −𝒛𝒛
o 𝒚𝒚 × 𝒛𝒛 = 𝒙𝒙
o 𝒛𝒛 × 𝒚𝒚 = −𝒙𝒙
o 𝒛𝒛 × 𝒙𝒙 = 𝒚𝒚
o 𝒙𝒙 × 𝒛𝒛 = −𝒚𝒚

• Note:
o We set a convention that 𝑥𝑥 × 𝑦𝑦 should be in the plus or minus z direction

o 𝒙𝒙 × 𝒚𝒚 ≠ 𝒚𝒚 × 𝒙𝒙

z

y

x
(0,0,0)

OpenGL 3D 
coordinate



Background: Cross Product
• Properties

o 𝒂𝒂 × 𝒃𝒃 + 𝒄𝒄 = 𝒂𝒂 × 𝒃𝒃 + 𝒂𝒂 × 𝒄𝒄

o 𝒂𝒂 × 𝑘𝑘𝒃𝒃 = 𝑘𝑘(𝒂𝒂 × 𝒃𝒃)

o 𝒂𝒂 × 𝒃𝒃 = −(𝒃𝒃 × 𝒂𝒂)

• Cross product in Cartesian coordinates (based on 𝒙𝒙 × 𝒙𝒙 = 𝟎𝟎)
o 𝒂𝒂 × 𝒃𝒃 = 𝑥𝑥𝑎𝑎𝒙𝒙 + 𝑦𝑦𝑎𝑎𝒚𝒚 + 𝑧𝑧𝑎𝑎𝒛𝒛 × 𝑥𝑥𝑏𝑏𝒙𝒙 + 𝑦𝑦𝑏𝑏𝒚𝒚 + 𝑧𝑧𝑏𝑏𝒛𝒛
o = 𝑥𝑥𝑎𝑎𝑥𝑥𝑏𝑏𝒙𝒙 × 𝒙𝒙 + 𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏𝒙𝒙 × 𝒚𝒚 + 𝑥𝑥𝑎𝑎𝑧𝑧𝑏𝑏𝒙𝒙 × 𝒛𝒛 + 𝑦𝑦𝑎𝑎𝑥𝑥𝑏𝑏𝒚𝒚 × 𝒙𝒙 + 𝑦𝑦𝑎𝑎𝑦𝑦𝑏𝑏𝒚𝒚 × 𝒚𝒚 + 𝑦𝑦𝑎𝑎𝑧𝑧𝑏𝑏𝒚𝒚 × 𝒛𝒛 + 𝑧𝑧𝑎𝑎𝑥𝑥𝑏𝑏𝒛𝒛 × 𝒙𝒙 + 𝑧𝑧𝑎𝑎𝑦𝑦𝑏𝑏𝒛𝒛 ×
𝒚𝒚 + 𝑧𝑧𝑎𝑎𝑧𝑧𝑏𝑏𝒛𝒛 × 𝒛𝒛

o = 𝑦𝑦𝑎𝑎𝑧𝑧𝑏𝑏 − 𝑧𝑧𝑎𝑎𝑦𝑦𝑏𝑏 𝒙𝒙 + 𝑧𝑧𝑎𝑎𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑎𝑎𝑧𝑧𝑏𝑏 𝒚𝒚 + 𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏 − 𝑦𝑦𝑎𝑎𝑥𝑥𝑏𝑏 𝒛𝒛

o In coordinate form,

 𝒂𝒂 × 𝒃𝒃 = (𝑦𝑦𝑎𝑎𝑧𝑧𝑏𝑏 − 𝑧𝑧𝑎𝑎𝑦𝑦𝑏𝑏, 𝑧𝑧𝑎𝑎𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑎𝑎𝑧𝑧𝑏𝑏, 𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏 − 𝑦𝑦𝑎𝑎𝑥𝑥𝑏𝑏)



3D Transformation (rotation) – cont’d
• 2D, 3D rotations are orthogonal matrices.

o Rows of the matrix are mutually orthogonal unit vectors (orthonormal)



3D Transformation (rotation) – cont’d
• Inverse of transformation matrices

o Scale matrix is a diagonal matrix

 𝑀𝑀 =

𝑚𝑚11 0
0 𝑚𝑚22

0 0
0 0

0 0
0 0

𝑚𝑚33 0
0 𝑚𝑚44

, 𝑀𝑀−1 =

1/𝑚𝑚11 0
0 1/𝑚𝑚22

0 0
0 0

0 0
0 0

1/𝑚𝑚33 0
0 1/𝑚𝑚44

o Rotation matrices are orthonormal matrices
 A square matrix whose rows are orthogonal unit vectors 

 𝑆𝑆𝑇𝑇𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑇𝑇 = 𝐼𝐼

 𝑆𝑆−1 = 𝑆𝑆𝑇𝑇


	Homogeneous Coordinates
	2D Translation
	Homogeneous Coordinates
	Homogeneous Coordinates
	Examples
	Examples
	Examples
	Examples
	Examples
	Rigid-body Transformation
	Discussion 
	3D Transformation
	OpenGL 3D coordinate
	3D Transformation (scale)
	3D Transformation (translation)
	3D Transformation (rotation)
	3D Transformation (rotation)
	Background: Vector
	Background: Vector
	Background: Vector
	Background: Vector
	Background: Basis Vector
	Background: Basis Vector
	Background: Basis Vector
	Background: Cartesian Coordinate System
	Background: Cartesian Coordinate System
	Background: Dot Product
	Background: Dot Product
	Background: Cross Product
	Background: Cross Product
	Background: Cross Product
	3D Transformation (rotation) – cont’d
	3D Transformation (rotation) – cont’d

