Lecture slides (CT4201/EC4215 – Computer Graphics)

Homogeneous Coordinates

Lecturer: Bochang Moon

2D Translation

- Transformations such as rotation and scale can be represented using a matrix M
 - $\circ e.g., M = SR$ $\circ x' = m_{11}x + m_{12}y$ $\circ y' = m_{21}x + m_{22}y$
- How about translation?

$$o x' = x + x_{\delta}$$
$$o y' = y + y_{\delta}$$

• No way to express this using a 2 x 2 matrix

Homogeneous Coordinates

Affine transformation

O Preserve points, straight lines, and planes after a transformation

o e.g., scale, rotation, translation, reflect, shear

- Represent the point (x, y) by a 3D vector [x, y, 1]^t
 O Add an extra dimension
- Use the following matrix form to implement affine transformations

•
$$M = \begin{bmatrix} m_{11} & m_{12} & x_{\delta} \\ m_{21} & m_{22} & y_{\delta} \\ 0 & 0 & 1 \end{bmatrix}$$

Homogeneous Coordinates

 Compactly represent multiple affine transformations (including translations) with a matrix

• e.g., 2D translation

$$\circ \begin{bmatrix} 1 & 0 & x_{\delta} \\ 0 & 1 & y_{\delta} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + x_{\delta} \\ y + y_{\delta} \\ 1 \end{bmatrix}$$

• e.g., rotation after 2D translation

$$\circ M = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & x_{\delta} \\ 0 & 1 & y_{\delta} \\ 0 & 0 & 1 \end{bmatrix}$$

• Problem specification: move a 2D rectangle into a new position

• Problem specification: move a 2D rectangle into a new position

• Step1. translate: move the point (x_l, y_l) to the origin

• Problem specification: move a 2D rectangle into a new position

• Step2. scale: resize the rectangle to be the same size of the target.

• Problem specification: move a 2D rectangle into a new position

• Step3. translate: move the origin to point (x'_l, y'_l)

• Problem specification: move a 2D rectangle into a new position • Target = translate(x'_l, y'_l) scale $\left(\frac{x'_h - x'_l}{x_h - x_l}, \frac{y'_h - y'_l}{y_h - y_l}\right)$ translate($-x_l, -y_l$)

$$\circ = \begin{bmatrix} 1 & 0 & x_l' \\ 0 & 1 & y_l' \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{x_h' - x_l'}{x_h - x_l} & 0 & 0 \\ 0 & \frac{y_h' - y_l'}{y_h - y_l} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_l \\ 0 & 1 & -y_l \\ 0 & 0 & 1 \end{bmatrix}$$

$$O = \begin{bmatrix} \frac{x'_h - x'_l}{x_h - x_l} & 0 & \frac{x'_l x_h - x'_h x_l}{x_h - x_l} \\ 0 & \frac{y'_h - y'_l}{y_h - y_l} & \frac{y'_l y_h - y'_h y_l}{y_h - y_l} \\ 0 & 0 & 1 \end{bmatrix}$$

Rigid-body Transformation

- A transformation that preserves distances between every pair of points
 - Are composed only of translations and rotations
 - i.e., no stretching or shrinking of the objects

Discussion

• Homogenous coordinates are common for graphics applications. Why?

• A naïve way of implementing translations is to move the positions directly without forming a matrix

3D Transformation

- Extension of 2D transformation
- Why 3D transformation?
 - You virtual world is a 3D world.
 - 3D transformations are fundamental units to form your virtual scene.

OpenGL 3D coordinate

• Right-hand Coordinate System (RHS)

O Counter-clockwise

3D Transformation (scale)

•
$$scale(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{bmatrix}$$

• Representation with homogeneous coordinates

3D Transformation (translation)

• translate(x, y, z) =
$$\begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Transformation (rotation)

•
$$rotate - z(\theta) = \begin{bmatrix} cos\theta & -sin\theta & 0\\ sin\theta & cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

• $rotate - y(\theta) = \begin{bmatrix} cos\theta & 0 & sin\theta\\ 0 & 1 & 0\\ -sin\theta & 0 & cos\theta \end{bmatrix}$
• $rotate - x(\theta) = \begin{bmatrix} 1 & 0 & 0\\ 0 & cos\theta & -sin\theta\\ 0 & sin\theta & cos\theta \end{bmatrix}$

Representation with homogeneous coordinates

•
$$rotate - z(\theta) = \begin{bmatrix} cos\theta & -sin\theta & 0 & 0\\ sin\theta & cos\theta & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Transformation (rotation)

- 2D, 3D rotations are *orthogonal* matrices.
 - O Rows of the matrix are mutually orthogonal unit vectors

• Need some background on vectors...

- A vector describes a length and a direction
 - O Commonly drawn by an arrow

- A vector describes a length and a direction
- Notations: **a (bold character)** • Other ways? e.g., \vec{a}
- Length of a vector
 0 || a ||
- Unit vector

 $\, \circ \,$ A vector ${\bf a}$ if ${\| \ {\bf a} \, \|} = 1$

- Zero vector
 - $\, \odot \,$ A vector ${\bf a}$ if ${\| \ {\bf a} \, \|} = 0$
- Two vectors are equal if and only if they have the same length and direction.

Background: Basis Vector

• A 2D vector can be written as a combination of any two nonzero vectors which are not parallel

(linear independence)

• Two linearly independent vectors (basis vectors) form a 2D basis

- e.g., $\boldsymbol{c} = a_c \boldsymbol{a} + b_c \boldsymbol{b}$
 - O Weights are unique

Background: Basis Vector

• A 2D vector can be written as a combination of any two nonzero vectors which are not

parallel (*linear independence*)

• Two linearly independent vectors (basis vectors) form a 2D basis

• Orthogonality

• Two vectors are orthogonal if they are at right angles to each other

Background: Basis Vector

- A 2D vector can be written as a combination of any two nonzero vectors which are not parallel (*linear independence*)
 - Two linearly independent vectors (basis vectors) form a 2D basis
- Special cases
 - O Two vectors are *orthogonal* if they are at right angles to each other
 - Two vectors are *orthonormal* if they are orthogonal and unit vectors

• Note: the special vectors can be used to represent all other vectors in *a Cartesian coordinate system*

• A coordinate system that specifies each point uniquely

Background: Cartesian Coordinate System

• Special cases

- Two vectors are *orthogonal* if they are at right angles to each other
- Two vectors are *orthonormal* if they are orthogonal and unit vectors
- Note: the special *orthonormal* vector can be used to represent all other vectors in *a Cartesian coordinate system*
 - A coordinate system that specifies each point uniquely in a plane or 3D space by a pair of numerical components
 - $e.g., a = x_a x + y_a y$
 - x_a and y_a are Cartesian coordinates of the 2D vector a

Image from wikipedia

Background: Cartesian Coordinate System

• Properties of a Cartesian coordinate system

$$\circ \parallel \boldsymbol{a} \parallel = \sqrt{x_a^2 + y_a^2}$$
$$\circ \boldsymbol{a} = \begin{bmatrix} x_a \\ y_a \end{bmatrix}$$
$$\circ \boldsymbol{a}^T = \begin{bmatrix} x_a & y_a \end{bmatrix}$$

- 3D case
 - $\circ \boldsymbol{a} = x_a \boldsymbol{x} + y_a \boldsymbol{y} + z_a \boldsymbol{z}$
 - x, y, z are orthonormal

Background: Dot Product

- Vector multiplications
 - Dot product (scalar product)
 - $a \cdot b = ||a|||b|| \cos\theta$
 - Properties
 - $a \cdot b = b \cdot a$ (commutative)
 - $a \cdot (b + c) = a \cdot b + a \cdot c$ (distributive)
 - $(ka) \cdot b = a \cdot (kb) = ka \cdot b$ (scalar multiplication)
 - Orthogonal
 - $\boldsymbol{a} \cdot \boldsymbol{b} = \parallel \boldsymbol{a} \parallel \parallel \boldsymbol{b} \parallel cos\theta = 0$
 - Two non-zero vectors **a** and **b** are *orthogonal* if and only if $\boldsymbol{a} \cdot \boldsymbol{b} = 0$

b

θ

а

Background: Dot Product

- Vector multiplications
 - O Dot product (scalar product)
 - $a \cdot b = ||a||||b|| \cos\theta$
 - Usage: $(a \rightarrow b)$ projection of a vector to another one
 - $a \rightarrow b = || a || \cos \theta = \frac{a \cdot b}{||b||}$
 - Note: this is the length of the projected vector onto b
 - O Dot product in Cartesian coordinates
 - Properties: $x \cdot x = y \cdot y = 1$ and $x \cdot y = 0$
 - $\boldsymbol{a} \cdot \boldsymbol{b} = (x_a \boldsymbol{x} + y_a \boldsymbol{y}) \cdot (x_b \boldsymbol{x} + y_b \boldsymbol{y})$
 - $= x_a x_b (\mathbf{x} \cdot \mathbf{x}) + x_a y_b (\mathbf{x} \cdot \mathbf{y}) + x_b y_a (\mathbf{y} \cdot \mathbf{x}) + y_a y_b (\mathbf{y} \cdot \mathbf{y})$
 - $= x_a x_b + y_a y_b$
 - In 3D,
 - $\boldsymbol{a} \cdot \boldsymbol{b} = x_a x_b + y_a y_b + z_a z_b$

Background: Cross Product

- Vector multiplications
 - O Cross products (used only for 3D vectors)
 - $a \times b = || a || || b || sin\theta$ n
 - n: unit vector that is perpendicular to **a** and **b**
 - Return a 3D vector that is perpendicular to the two arguments
 - Two possible directions of the resulting vector
 - O Length of the resulting vector
 - $|| a \times b || = || a || || b || sin\theta$
 - Equal to the area of the parallelogram formed by the two vectors **a** and **b**
 - O Three Cartesian unit vectors
 - *x* = (1,0,0)
 - **y** = (0,1,0)
 - *z* = (0,0,1)

Background: Cross Product

• Note:

• We set a convention that $x \times y$ should be in the plus or minus z direction

 $\circ x \times y \neq y \times x$

Background: Cross Product

• Properties

- $o \ a \times (b + c) = a \times b + a \times c$
- $\circ \mathbf{a} \times (k\mathbf{b}) = k(\mathbf{a} \times \mathbf{b})$
- $\circ a \times b = -(b \times a)$
- Cross product in Cartesian coordinates (based on $x \times x = 0$)

 $\circ \mathbf{a} \times \mathbf{b} = (x_a \mathbf{x} + y_a \mathbf{y} + z_a \mathbf{z}) \times (x_b \mathbf{x} + y_b \mathbf{y} + z_b \mathbf{z})$

- $\circ = x_a x_b \mathbf{x} \times \mathbf{x} + x_a y_b \mathbf{x} \times \mathbf{y} + x_a z_b \mathbf{x} \times \mathbf{z} + y_a x_b \mathbf{y} \times \mathbf{x} + y_a y_b \mathbf{y} \times \mathbf{y} + y_a z_b \mathbf{y} \times \mathbf{z} + z_a x_b \mathbf{z} \times \mathbf{x} + z_a y_b \mathbf{z} \times \mathbf{z}$
- $\circ \qquad = (y_a z_b z_a y_b) \mathbf{x} + (z_a x_b x_a z_b) \mathbf{y} + (x_a y_b y_a x_b) \mathbf{z}$

• In coordinate form,

•
$$\boldsymbol{a} \times \boldsymbol{b} = (y_a z_b - z_a y_b, z_a x_b - x_a z_b, x_a y_b - y_a x_b)$$

3D Transformation (rotation) – cont'd

• 2D, 3D rotations are *orthogonal* matrices.

• Rows of the matrix are mutually orthogonal unit vectors (orthonormal)

3D Transformation (rotation) – cont'd

- Inverse of transformation matrices
 - O Scale matrix is a diagonal matrix

•
$$M = \begin{bmatrix} m_{11} & 0 & 0 & 0 \\ 0 & m_{22} & 0 & 0 \\ 0 & 0 & m_{33} & 0 \\ 0 & 0 & 0 & m_{44} \end{bmatrix}, M^{-1} = \begin{bmatrix} 1/m_{11} & 0 & 0 & 0 \\ 0 & 1/m_{22} & 0 & 0 \\ 0 & 0 & 1/m_{33} & 0 \\ 0 & 0 & 0 & 1/m_{44} \end{bmatrix}$$

O Rotation matrices are *orthonormal* matrices

- A square matrix whose rows are orthogonal unit vectors
- $R^T R = R R^T = I$
- $R^{-1} = R^T$

