Lecture slides (CT4201/EC4215 - Computer Graphics)

Homogeneous Coordinates

Lecturer: Bochang Moon

2D Translation

- Transformations such as rotation and scale can be represented using a matrix M
o e.g., $M=S R$
o $x^{\prime}=m_{11} x+m_{12} y$
o $y^{\prime}=m_{21} x+m_{22} y$
- How about translation?

○ $x^{\prime}=x+x_{\delta}$
○ $y^{\prime}=y+y_{\delta}$
o No way to express this using a 2×2 matrix

Homogeneous Coordinates

- Affine transformation
o Preserve points, straight lines, and planes after a transformation
o e.g., scale, rotation, translation, reflect, shear
- Represent the point (x, y) by a 3 D vector $[x, y, 1]^{t}$
o Add an extra dimension
- Use the following matrix form to implement affine transformations
- $M=\left[\begin{array}{ccc}m_{11} & m_{12} & x_{\delta} \\ m_{21} & m_{22} & y_{\delta} \\ 0 & 0 & 1\end{array}\right]$

Homogeneous Coordinates

- Compactly represent multiple affine transformations (including translations) with a matrix
- e.g., 2D translation

O $\left[\begin{array}{ccc}1 & 0 & x_{\delta} \\ 0 & 1 & y_{\delta} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{c}x+x_{\delta} \\ y+y_{\delta} \\ 1\end{array}\right]$

- e.g., rotation after 2D translation
$\circ M=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & x_{\delta} \\ 0 & 1 & y_{\delta} \\ 0 & 0 & 1\end{array}\right]$

Examples

- Problem specification: move a 2D rectangle into a new position

Examples

- Problem specification: move a 2D rectangle into a new position
o Step1. translate: move the point $\left(x_{l}, y_{l}\right)$ to the origin

Examples

- Problem specification: move a 2D rectangle into a new position
o Step2. scale: resize the rectangle to be the same size of the target.

Examples

- Problem specification: move a 2D rectangle into a new position
o Step3. translate: move the origin to point $\left(x_{l}^{\prime}, y_{l}^{\prime}\right)$

Examples

- Problem specification: move a 2D rectangle into a new position
- Target $=$ translate $\left(x_{l}^{\prime}, y_{l}^{\prime}\right)$ scale $\left(\frac{x_{h}^{\prime}-x_{l}^{\prime}}{x_{h}-x_{l}}, \frac{y_{h}^{\prime}-y_{l}^{\prime}}{y_{h}-y_{l}}\right)$ translate $\left(-x_{l},-y_{l}\right)$
$O=\left[\begin{array}{ccc}1 & 0 & x_{l}^{\prime} \\ 0 & 1 & y_{l}^{\prime} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\frac{x_{h}^{\prime}-x_{l}^{\prime}}{x_{h}-x_{l}} & 0 & 0 \\ 0 & \frac{y_{h}^{\prime}-y_{l}^{\prime}}{y_{h}-y_{l}} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -x_{l} \\ 0 & 1 & -y_{l} \\ 0 & 0 & 1\end{array}\right]$
$O=\left[\begin{array}{ccc}\frac{x_{h^{\prime}}^{\prime}-x_{l}^{\prime}}{x_{h}-x_{l}} & 0 & \frac{x_{l}^{\prime} x_{h}-x_{h}^{\prime} x_{l}}{x_{h}-x_{l}} \\ 0 & \frac{y_{h}^{\prime}-y_{l}^{\prime}}{y_{h}-y_{l}} & \frac{y_{l}^{\prime} y_{h}-y_{h}^{\prime} y_{l}}{y_{h}-y_{l}} \\ 0 & 0 & 1\end{array}\right]$

Rigid-body Transformation

- A transformation that preserves distances between every pair of points
- Are composed only of translations and rotations

O i.e., no stretching or shrinking of the objects

Discussion

- Homogenous coordinates are common for graphics applications. Why?
- A naïve way of implementing translations is to move the positions directly without forming a matrix

3D Transformation

- Extension of 2D transformation
- Why 3D transformation?
o You virtual world is a 3D world.
o 3D transformations are fundamental units to form your virtual scene.

OpenGL 3D coordinate

- Right-hand Coordinate System (RHS)
o Counter-clockwise

3D Transformation (scale)

- $\operatorname{scale}\left(s_{x}, s_{y}, s_{z}\right)=\left[\begin{array}{ccc}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & s_{z}\end{array}\right]$
- Representation with homogeneous coordinates
$\circ\left[\begin{array}{cccc}s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

3D Transformation (translation)

- translate $(x, y, z)=\left[\begin{array}{cccc}1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1\end{array}\right]$

3D Transformation (rotation)

- rotate $-z(\theta)=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
- rotate $-y(\theta)=\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right]$
- rotate $-x(\theta)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right]$
- Representation with homogeneous coordinates
- rotate $-z(\theta)=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Computer Graphics
Laboratory

3D Transformation (rotation)

- 2D, 3D rotations are orthogonal matrices.
o Rows of the matrix are mutually orthogonal unit vectors
- Need some background on vectors...

Background: Vector

- A vector describes a length and a direction
o Commonly drawn by an arrow

Background: Vector

- A vector describes a length and a direction
- Notations: a (bold character)
o Other ways? e.g., \vec{a}
- Length of a vector

○ || a ||

- Unit vector
o A vector a if || a || $=1$
- Zero vector
o A vector a if || a || = 0
- Two vectors are equal if and only if they have the same length and direction.

Background: Vector

- Vector addition: Parallelogram rule

a
- Properties

○ $\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{b}+\boldsymbol{a}$ (commutative)

Background: Vector

- Unary minus of a vector a

○ $-\boldsymbol{a}$

- Subtraction

○ $\boldsymbol{b}-\boldsymbol{a} \equiv-\boldsymbol{a}+\boldsymbol{b}$

- Scale
o ka

0.5a

Background: Basis Vector

- A 2D vector can be written as a combination of any two nonzero vectors which are not parallel (linear independence)
- Two linearly independent vectors (basis vectors) form a 2D basis
- e.g., $\boldsymbol{c}=a_{c} \boldsymbol{a}+b_{c} \boldsymbol{b}$
- Weights are unique

Background: Basis Vector

- A 2D vector can be written as a combination of any two nonzero vectors which are not parallel (linear independence)
- Two linearly independent vectors (basis vectors) form a 2D basis
- Orthogonality
o Two vectors are orthogonal if they are at right angles to each other

Background: Basis Vector

- A 2D vector can be written as a combination of any two nonzero vectors which are not parallel (linear independence)
- Two linearly independent vectors (basis vectors) form a 2D basis
- Special cases
- Two vectors are orthogonal if they are at right angles to each other
- Two vectors are orthonormal if they are orthogonal and unit vectors

o Note: the special vectors can be used to represent all other vectors in a Cartesian coordinate system
- A coordinate system that specifies each point uniquely

Background: Cartesian Coordinate System

- Special cases
o Two vectors are orthogonal if they are at right angles to each other
o Two vectors are orthonormal if they are orthogonal and unit vectors
o Note: the special orthonormal vector can be used to represent all other vectors in a Cartesian coordinate system
- A coordinate system that specifies each point uniquely in a plane or 3D space by a pair of numerical components
- e.g., $\boldsymbol{a}=x_{a} \boldsymbol{x}+y_{a} \boldsymbol{y}$
- x_{a} and y_{a} are Cartesian coordinates of the 2D vector \boldsymbol{a}

Image from wikipedia

Background: Cartesian Coordinate System

- Properties of a Cartesian coordinate system

○ $\|\boldsymbol{a}\|=\sqrt{x_{a}^{2}+y_{a}^{2}}$
○ $\boldsymbol{a}=\left[\begin{array}{l}x_{a} \\ y_{a}\end{array}\right]$
$\circ \boldsymbol{a}^{\boldsymbol{T}}=\left[\begin{array}{ll}x_{a} & y_{a}\end{array}\right]$

- 3D case

○ $\boldsymbol{a}=x_{a} \boldsymbol{x}+y_{a} \boldsymbol{y}+z_{a} \boldsymbol{z}$
o x, y, z are orthonormal

Background: Dot Product

- Vector multiplications
o Dot product (scalar product)
- arb $=\|\boldsymbol{a}\|| | \boldsymbol{b} \| \cos \theta$
- Properties

- $\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{b} \cdot \mathbf{a}$ (commutative)
- $\boldsymbol{a} \cdot(\boldsymbol{b}+\boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b}+\boldsymbol{a} \cdot \boldsymbol{c}$ (distributive)
- $(k \boldsymbol{a}) \cdot \boldsymbol{b}=\boldsymbol{a} \cdot(k \boldsymbol{b})=k \boldsymbol{a} \cdot \boldsymbol{b}$ (scalar multiplication)
- Orthogonal
- $\boldsymbol{a} \cdot \boldsymbol{b}=\|\boldsymbol{a}\|\|\boldsymbol{b}\| \cos \theta=0$
- Two non-zero vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if $\boldsymbol{a} \cdot \boldsymbol{b}=0$

Background: Dot Product

- Vector multiplications

O Dot product (scalar product)

- $\boldsymbol{a} \cdot \boldsymbol{b}=\|\boldsymbol{a}\|\|\boldsymbol{b}\| \cos \theta$
- Usage: $(\boldsymbol{a} \rightarrow \boldsymbol{b})$ projection of a vector to another one
- $a \rightarrow b=\|\boldsymbol{a}\| \cos \theta=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\|\boldsymbol{b}\|}$
- Note: this is the length of the projected vector onto \mathbf{b}

O Dot product in Cartesian coordinates

- Properties: $\boldsymbol{x} \cdot \boldsymbol{x}=\boldsymbol{y} \cdot \boldsymbol{y}=1$ and $\boldsymbol{x} \cdot \boldsymbol{y}=0$
- $\boldsymbol{a} \cdot \boldsymbol{b}=\left(x_{a} \boldsymbol{x}+y_{a} \boldsymbol{y}\right) \cdot\left(x_{b} \boldsymbol{x}+y_{b} \boldsymbol{y}\right)$
- $\quad=x_{a} x_{b}(\boldsymbol{x} \cdot \boldsymbol{x})+x_{a} y_{b}(\boldsymbol{x} \cdot \boldsymbol{y})+x_{b} y_{a}(\boldsymbol{y} \cdot \boldsymbol{x})+y_{a} y_{b}(\boldsymbol{y} \cdot \boldsymbol{y})$
- $\quad=x_{a} x_{b}+y_{a} y_{b}$
- In 3D,
- $\boldsymbol{a} \cdot \boldsymbol{b}=x_{a} x_{b}+y_{a} y_{b}+z_{a} z_{b}$

Background: Cross Product

- Vector multiplications
- Cross products (used only for 3D vectors)
- $\boldsymbol{a} \times \boldsymbol{b}=\|a\|\|b\| \sin \theta \mathbf{n}$
- n: unit vector that is perpendicular to \boldsymbol{a} and \boldsymbol{b}
- Return a 3D vector that is perpendicular to the two arguments
- Two possible directions of the resulting vector
- Length of the resulting vector
- \| $\boldsymbol{a} \times \boldsymbol{b}\|=\| \boldsymbol{a}\| \| \boldsymbol{b} \| \sin \theta$
- Equal to the area of the parallelogram formed by the two vectors \boldsymbol{a} and \boldsymbol{b}

- Three Cartesian unit vectors
- $\boldsymbol{x}=(1,0,0)$
- $\boldsymbol{y}=(0,1,0)$
- $z=(0,0,1)$

Background: Cross Product

- Cross products of the unit vectors

○ $\boldsymbol{x} \times \boldsymbol{y}=\boldsymbol{z}$
○ $\boldsymbol{y} \times \boldsymbol{x}=-\boldsymbol{z}$
○ $y \times z=x$
○ $z \times y=-x$
○ $z \times x=y$
○ $\boldsymbol{x} \times \boldsymbol{z}=-\boldsymbol{y}$

- Note:
o We set a convention that $x \times y$ should be in the plus or minus z direction
○ $x \times y \neq y \times x$

Background: Cross Product

- Properties

○ $\boldsymbol{a} \times(\boldsymbol{b}+\boldsymbol{c})=\boldsymbol{a} \times \boldsymbol{b}+\boldsymbol{a} \times \boldsymbol{c}$
○ $\boldsymbol{a} \times(k \boldsymbol{b})=k(\boldsymbol{a} \times \boldsymbol{b})$
○ $\boldsymbol{a} \times \boldsymbol{b}=-(\boldsymbol{b} \times \boldsymbol{a})$

- Cross product in Cartesian coordinates (based on $\boldsymbol{x} \times \boldsymbol{x}=\mathbf{0}$)

○ $\boldsymbol{a} \times \boldsymbol{b}=\left(x_{a} \boldsymbol{x}+y_{a} \boldsymbol{y}+z_{a} \boldsymbol{z}\right) \times\left(x_{b} \boldsymbol{x}+y_{b} \boldsymbol{y}+z_{b} \boldsymbol{z}\right)$

○

$$
=\left(y_{a} z_{b}-z_{a} y_{b}\right) \boldsymbol{x}+\left(z_{a} x_{b}-x_{a} z_{b}\right) \boldsymbol{y}+\left(x_{a} y_{b}-y_{a} x_{b}\right) \boldsymbol{z}
$$

o In coordinate form,

- $\boldsymbol{a} \times \boldsymbol{b}=\left(y_{a} z_{b}-z_{a} y_{b}, z_{a} x_{b}-x_{a} z_{b}, x_{a} y_{b}-y_{a} x_{b}\right)$

3D Transformation (rotation) - cont'd

- 2D, 3D rotations are orthogonal matrices.
o Rows of the matrix are mutually orthogonal unit vectors (orthonormal)

3D Transformation (rotation) - cont'd

- Inverse of transformation matrices
o Scale matrix is a diagonal matrix
- $M=\left[\begin{array}{cccc}m_{11} & 0 & 0 & 0 \\ 0 & m_{22} & 0 & 0 \\ 0 & 0 & m_{33} & 0 \\ 0 & 0 & 0 & m_{44}\end{array}\right], M^{-1}=\left[\begin{array}{cllll}1 / m_{11} & 0 & 0 & 0 \\ 0 & 1 / m_{22} & 0 & 0 \\ 0 & 0 & 1 / m_{33} & 0 \\ 0 & 0 & 0 & 1 / m_{44}\end{array}\right]$
o Rotation matrices are orthonormal matrices
- A square matrix whose rows are orthogonal unit vectors
- $R^{T} R=R R^{T}=I$
- $R^{-1}=R^{T}$

