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Viewport Transformation
• Primitives (or line segments) within the canonical view volume will be mapped to the 

image
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(1,1,1)
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y
z

Image (or window on the screen)

𝑛𝑛𝑥𝑥 pixels

𝑛𝑛𝑦𝑦 pixels



Viewport Transformation
• Ignore the z-coordinates of points for now

o In practice, we need the z-coordinates and this will be covered later. 

• Map the square −1,1 2to the rectangle −0.5,𝑛𝑛𝑥𝑥 − 0.5 × [−0.5,𝑛𝑛𝑦𝑦 − 0.5]
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Raster Image (again)
• Ignore the z-coordinates of points for now

o In practice, we need the z-coordinates and this will be covered later. 

• Map the square −1,1 2to the rectangle −0.5,𝑛𝑛𝑥𝑥 − 0.5 × [−0.5,𝑛𝑛𝑦𝑦 − 0.5]

• Where do we need to locate pixels in 2D space?

4x4 image
y

x(0,0)

x=-0.5 x=3.5
y=-0.5

y=3.5



Raster Image (again)
• Ignore the z-coordinates of points for now

o In practice, we need the z-coordinates and this will be covered later. 

• Map the square −1,1 2to the rectangle −0.5,𝑛𝑛𝑥𝑥 − 0.5 × [−0.5,𝑛𝑛𝑦𝑦 − 0.5]

• Where do we need to locate pixels in 2D space?

• The rectangular domain of a 𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑦𝑦 image
o 𝑅𝑅 = −0.5,𝑛𝑛𝑥𝑥 − 0.5 × [−0.5,𝑛𝑛𝑦𝑦 − 0.5]



Viewport Transformation
• Ignore the z-coordinates of points for now

o In practice, we need the z-coordinates and this will be covered later. 

• Map the square −1,1 2to the rectangle −0.5,𝑛𝑛𝑥𝑥 − 0.5 × [−0.5,𝑛𝑛𝑦𝑦 − 0.5]

• Q. How do we transform a rectangle to another rectangle?



Example: Windowing Transform
• Problem specification: move a 2D rectangle into a new position
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x
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Example: Windowing Transform
• Problem specification: move a 2D rectangle into a new position

o Step1. translate: move the point 𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙 to the origin

y

x

(𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙)

(𝑥𝑥ℎ,𝑦𝑦ℎ) y

x

(𝑥𝑥ℎ − 𝑥𝑥𝑙𝑙 ,𝑦𝑦ℎ − 𝑦𝑦𝑙𝑙)



Example: Windowing Transform
• Problem specification: move a 2D rectangle into a new position

o Step2. scale: resize the rectangle to be the same size of the target.
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(𝑥𝑥ℎ − 𝑥𝑥𝑙𝑙 ,𝑦𝑦ℎ − 𝑦𝑦𝑙𝑙)
(𝑥𝑥ℎ′ − 𝑥𝑥𝑙𝑙′,𝑦𝑦ℎ′ − 𝑦𝑦𝑙𝑙′)



Example: Windowing Transform
• Problem specification: move a 2D rectangle into a new position

o Step3. translate: move the origin to point (𝑥𝑥𝑙𝑙′,𝑦𝑦𝑙𝑙′)

y

x

y

x

(𝑥𝑥ℎ′ − 𝑥𝑥𝑙𝑙′,𝑦𝑦ℎ′ − 𝑦𝑦𝑙𝑙′)

(𝑥𝑥𝑙𝑙′,𝑦𝑦𝑙𝑙′)

(𝑥𝑥ℎ′ ,𝑦𝑦ℎ′ )



Example: Windowing Transform
• Problem specification: move a 2D rectangle into a new position

o Target = translate(𝑥𝑥𝑙𝑙′,𝑦𝑦𝑙𝑙′) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑥𝑥ℎ
′ −𝑥𝑥𝑙𝑙

′

𝑥𝑥ℎ−𝑥𝑥𝑙𝑙
, 𝑦𝑦ℎ

′−𝑦𝑦𝑙𝑙
′

𝑦𝑦ℎ−𝑦𝑦𝑙𝑙
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(−𝑥𝑥𝑙𝑙 ,−𝑦𝑦𝑙𝑙)

o =
1 0 𝑥𝑥𝑙𝑙′

0 1 𝑦𝑦𝑙𝑙′
0 0 1

𝑥𝑥ℎ
′ −𝑥𝑥𝑙𝑙

′

𝑥𝑥ℎ−𝑥𝑥𝑙𝑙
0 0

0 𝑦𝑦ℎ
′−𝑦𝑦𝑙𝑙

′

𝑦𝑦ℎ−𝑦𝑦𝑙𝑙
0

0 0 1

1 0 −𝑥𝑥𝑙𝑙
0 1 −𝑦𝑦𝑙𝑙
0 0 1

o =

𝑥𝑥ℎ
′ −𝑥𝑥𝑙𝑙

′

𝑥𝑥ℎ−𝑥𝑥𝑙𝑙
0 𝑥𝑥𝑙𝑙

′𝑥𝑥ℎ−𝑥𝑥ℎ
′ 𝑥𝑥𝑙𝑙

𝑥𝑥ℎ−𝑥𝑥𝑙𝑙

0 𝑦𝑦ℎ
′−𝑦𝑦𝑙𝑙

′

𝑦𝑦ℎ−𝑦𝑦𝑙𝑙

𝑦𝑦𝑙𝑙
′𝑦𝑦ℎ−𝑦𝑦ℎ

′𝑦𝑦𝑙𝑙
𝑦𝑦ℎ−𝑦𝑦𝑙𝑙

0 0 1



Viewport Transformation
• Ignore the z-coordinates of points for now

o In practice, we need the z-coordinates and this will be covered later. 

• Map the square −1,1 2to the rectangle −0.5,𝑛𝑛𝑥𝑥 − 0.5 × [−0.5,𝑛𝑛𝑦𝑦 − 0.5]

•
𝑥𝑥𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

1
=

𝑛𝑛𝑥𝑥
2

0 𝑛𝑛𝑥𝑥−1
2

0 𝑛𝑛𝑦𝑦
2

𝑛𝑛𝑦𝑦−1
2

0 0 1

𝑥𝑥𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

1

• For the case with z-coordinates,

o 𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =

𝑛𝑛𝑥𝑥
2

0

0 𝑛𝑛𝑦𝑦
2

0 𝑛𝑛𝑥𝑥−1
2

0 𝑛𝑛𝑦𝑦−1
2

0 0
0 0

1 0
0 1



Sequence of Spaces and Transformations
Object 
space

Modeling 
transformation

World space

Viewing
transformation

Eye (camera) 
space 

Projection
Transformation

Canonical view volume 
(normalized device coordinates)

Viewport
Transformation

Screen space



Projections
• Transform 3D points in eye space to 2D points in image space

• Two types of projections
o Orthographic projection
o Perspective projection

Modeling 
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Illumination

Viewing 
Transformation

Clipping
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Display
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y

z



Orthographic Projection
• Assumption

o A viewer is looking along the minus z-axis with his head pointing in the y-direction
 Implies n > f

x

y

z
(l,b,n)

(r,t,f)



Orthographic Projection
• The view volume (orthographic view volume) is an axis-aligned box 

o [l, r] x [b, t] x [f, n]

• Notations
o 𝑥𝑥 = 𝑙𝑙 ≡ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑥𝑥 = 𝑟𝑟 ≡ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

o 𝑦𝑦 = 𝑏𝑏 ≡ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑦𝑦 = 𝑡𝑡 ≡ 𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

o 𝑧𝑧 = 𝑛𝑛 ≡ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑧𝑧 = 𝑓𝑓 ≡ 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

x

y

z
(l,b,n)

(r,t,f)



Orthographic Projection
• Transform points in orthographic view volume to the canonical view volume

o Also windowing transform (3D)

(l,b,n)

(r,t,f)

(-1,-1,-1)

(1,1,1)

Projection
transformation



Orthographic Projection
• Transform points in orthographic view volume to the canonical view volume

o Also windowing transform (3D)
 Map a box 𝑥𝑥𝑙𝑙 , 𝑥𝑥ℎ × 𝑦𝑦𝑙𝑙 ,𝑦𝑦ℎ × 𝑧𝑧𝑙𝑙 , 𝑧𝑧ℎ to another box 𝑥𝑥𝑙𝑙′, 𝑥𝑥ℎ′ × 𝑦𝑦𝑙𝑙′,𝑦𝑦ℎ′ × [𝑧𝑧𝑙𝑙′, 𝑧𝑧ℎ′ ]



𝑥𝑥ℎ
′ −𝑥𝑥𝑙𝑙

′

𝑥𝑥ℎ−𝑥𝑥𝑙𝑙
0

0 𝑦𝑦ℎ
′−𝑦𝑦𝑙𝑙

′

𝑦𝑦ℎ−𝑦𝑦𝑙𝑙

0 𝑥𝑥𝑙𝑙
′𝑥𝑥ℎ−𝑥𝑥ℎ

′ 𝑥𝑥𝑙𝑙
𝑥𝑥ℎ−𝑥𝑥𝑙𝑙

0 𝑦𝑦𝑙𝑙
′𝑦𝑦ℎ−𝑦𝑦ℎ

′𝑦𝑦𝑙𝑙
𝑦𝑦ℎ−𝑦𝑦𝑙𝑙

0 0
0 0

𝑧𝑧ℎ
′−𝑧𝑧𝑙𝑙′
𝑧𝑧ℎ−𝑧𝑧𝑙𝑙

𝑧𝑧𝑙𝑙
′𝑧𝑧ℎ−𝑧𝑧ℎ

′ 𝑧𝑧𝑙𝑙
𝑧𝑧ℎ−𝑧𝑧𝑙𝑙

0 1



Orthographic Projection
• Transform points in orthographic view volume to the canonical view volume

o Also windowing transform (3D)

• 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =

2
𝑟𝑟−𝑙𝑙

0

0 2
𝑡𝑡−𝑏𝑏

0 −𝑟𝑟+𝑙𝑙
𝑟𝑟−𝑙𝑙

0 − 𝑡𝑡+𝑏𝑏
𝑡𝑡−𝑏𝑏

0 0
0 0

2
𝑛𝑛−𝑓𝑓

− 𝑛𝑛+𝑓𝑓
𝑛𝑛−𝑓𝑓

0 1



Composite Transformation
• The matrix that transforms points in world space to screen coordinate: 

• 𝑀𝑀 = 𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣



Orthographic Projection
• Transform points in orthographic view volume to the canonical view volume

o Also windowing transform (3D)

• Tend to ignore relative distances between objects and eye
o Unrealistic

• In practice, 
o We usually do not use this projection.
o It can be useful in applications where relative lengths should be judged. 



Orthographic Projection in OpenGL
• void glOrtho(GLdouble left, GLdouble right,

• GLdouble bottom, GLdouble top,

• GLdouble nearVal, GLdouble farVal);

(l,b,n)

(r,t,f)



Perspective Projection
• Objects in an image become smaller as their distance from the eye increases.

• History of perspective:
o Artists from the Renaissance period employed the perspective property.

Images from wikipedia



Perspective Projection
• Objects in an image become smaller as their distance from the eye increases.

• History of perspective:
o Artists from the Renaissance period employed the perspective property.

• In everyday life?



Perspective Projection
• 𝑦𝑦𝑠𝑠 = 𝑑𝑑

𝑧𝑧
𝑦𝑦

o 𝑦𝑦𝑠𝑠: y-axis coordinate in view plane
o y: distance of the point along the y-axis

d

vi
ew

 p
la

ne

e g

z

𝑦𝑦

𝑦𝑦𝑠𝑠



Homogeneous Coordinate
• Represent a point 𝑥𝑥,𝑦𝑦, 𝑧𝑧 with an extra coordinate w

o 𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤
o In the previous lecture, 𝑤𝑤 = 1

• Let’s define 𝑤𝑤 to be the denominator of the x-, y-, z-coordinates
o (𝑥𝑥, 𝑦𝑦, 𝑧𝑧,𝑤𝑤) represent the 3D point (𝑥𝑥

𝑤𝑤
, 𝑦𝑦
𝑤𝑤

, 𝑧𝑧
𝑤𝑤

)

o A special case, 𝑤𝑤 = 1, is still valid.

o 𝑤𝑤 can be any values 



Projective Transform
• Let’s define 𝑤𝑤 to be the denominator of the x-, y-, z-coordinates

o (𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤) represent the 3D point (𝑥𝑥
𝑤𝑤

, 𝑦𝑦
𝑤𝑤

, 𝑧𝑧
𝑤𝑤

)

o A special case, 𝑤𝑤 = 1, is still valid.
o 𝑤𝑤 can be any values 

• Projective transformation

o

�𝑥𝑥
�𝑦𝑦
𝑧̃𝑧
�𝑤𝑤

=

𝑎𝑎1 𝑏𝑏1
𝑎𝑎2 𝑏𝑏2

𝑐𝑐1 𝑑𝑑1
𝑐𝑐2 𝑑𝑑2

𝑎𝑎3 𝑏𝑏3
𝑒𝑒 𝑓𝑓

𝑐𝑐3 𝑑𝑑3
𝑔𝑔 ℎ

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

o 𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′ = ( �𝑥𝑥
�𝑤𝑤

, �𝑦𝑦
�𝑤𝑤

, �𝑧𝑧
�𝑤𝑤

)



Perspective Projection
• Example with 2D homogeneous vector 𝑦𝑦 𝑧𝑧 1 𝑇𝑇

o
𝑦𝑦𝑠𝑠
1 = 𝑑𝑑 0 0

0 1 0

𝑦𝑦
𝑧𝑧
1

o This is corresponding to the perspective equation, 𝑦𝑦𝑠𝑠 = 𝑑𝑑
𝑧𝑧
𝑦𝑦.



Perspective Projection
• Some info. for perspective matrix

o Define our project plane as the near plane
o Distance to the near plane: −𝑛𝑛
o Distance to the far plane: −𝑓𝑓

• Perspective equation: 𝑦𝑦𝑠𝑠 = 𝑛𝑛
𝑧𝑧
𝑦𝑦

• Perspective matrix

o 𝑃𝑃 =
𝑛𝑛 0
0 𝑛𝑛

0 0
0 0

0 0
0 0

𝑛𝑛 + 𝑓𝑓 −𝑓𝑓𝑓𝑓
1 0



Perspective Projection
• Perspective matrix

o 𝑃𝑃 =
𝑛𝑛 0
0 𝑛𝑛

0 0
0 0

0 0
0 0

𝑛𝑛 + 𝑓𝑓 −𝑓𝑓𝑓𝑓
1 0

• A mapping with the perspective matrix:

o 𝑃𝑃

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

=

𝑛𝑛𝑥𝑥
𝑛𝑛𝑛𝑛

𝑛𝑛 + 𝑓𝑓 𝑧𝑧 − 𝑓𝑓𝑓𝑓
𝑧𝑧

=

𝑛𝑛𝑥𝑥
𝑧𝑧
𝑛𝑛𝑛𝑛
𝑧𝑧

𝑛𝑛 + 𝑓𝑓 − 𝑓𝑓𝑛𝑛
𝑧𝑧

1



Perspective Projection
• A mapping with the perspective matrix:

o 𝑃𝑃

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

=

𝑛𝑛𝑥𝑥
𝑛𝑛𝑛𝑛

𝑛𝑛 + 𝑓𝑓 𝑧𝑧 − 𝑓𝑓𝑓𝑓
𝑧𝑧

=

𝑛𝑛𝑥𝑥
𝑧𝑧
𝑛𝑛𝑛𝑛
𝑧𝑧

𝑛𝑛 + 𝑓𝑓 − 𝑓𝑓𝑛𝑛
𝑧𝑧

1

• Properties
o The first, second, and fourth rows are for the perspective equation.
o The third row is for keeping z coordinate at least approximately.

 E.g., when z = n, transformed z coordinate is still n.
 E.g., when 𝑧𝑧 > 𝑛𝑛, we cannot preserve the z coordinate exactly, but relative orders between points 

will be preserved.



Perspective Projection
• Perspective matrix

o Map the perspective view volume to the orthographic view volume.



Composite Transformation
• The matrix that transforms points in world space to screen coordinate: 

• 𝑀𝑀 = 𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑃𝑃𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

• 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑃𝑃 (perspective projection matrix)

 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 =

2𝑛𝑛
𝑟𝑟−𝑙𝑙

0

0 2𝑛𝑛
𝑡𝑡−𝑏𝑏

𝑙𝑙+𝑟𝑟
𝑙𝑙−𝑟𝑟

0
𝑏𝑏+𝑡𝑡
𝑏𝑏−𝑡𝑡

0

0 0
0 0

𝑓𝑓+𝑛𝑛
𝑛𝑛−𝑓𝑓

2𝑓𝑓𝑓𝑓
𝑓𝑓−𝑛𝑛

1 0



Perspective Projection in OpenGL
• void glFrustum(GLdouble left, GLdouble right,

• GLdouble bottom, GLdouble top,

• GLdouble nearVal, GLdouble farVal);



Perspective Projection in OpenGL
• void gluPerspective(GLdouble fovy, GLdouble aspect,

• GLdouble zNear, GLdouble zFar);

• Parameters 
o fovy: field of view (in degrees) in the y direction

o aspect:  aspect ratio is the ratio of x (width) to y (height) 

• Symmetric constraints are implicitly applied.
o l = -r, b = -t

• A constraint to prevent image distortion

o 𝑛𝑛𝑥𝑥
𝑛𝑛𝑦𝑦

= 𝑟𝑟
𝑡𝑡 x

y

z

𝜃𝜃
2



Further Reading
• In our textbook, Fundamentals of Computer Graphics (4th edition)

o Chapter 7
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