
Lecturer: Bochang Moon

Projections
Lecture slides (CT4201/EC4215 – Computer Graphics)

1

Graphics Pipeline
Modeling

Transformation

Illumination

Viewing
Transformation

Clipping

Projection

Rasterization

Display

Sequence of Spaces and Transformations
Object
space

Modeling
transformation

World space

Viewing
transformation

Eye (camera)
space

Sequence of Spaces and Transformations
Object
space

Modeling
transformation

World space

Viewing
transformation

Eye (camera)
space

Projection
Transformation

Canonical view volume
(normalized device coordinates)

Viewport
Transformation

Screen space

Canonical View Volume

(-1,-1,-1)

(1,1,1)

x

y
z

Viewport Transformation
• Primitives (or line segments) within the canonical view volume will be mapped to the

image

(-1,-1,-1)

(1,1,1)

x

y
z

Image (or window on the screen)

𝑛𝑛𝑥𝑥 pixels

𝑛𝑛𝑦𝑦 pixels

Viewport Transformation
• Ignore the z-coordinates of points for now

o In practice, we need the z-coordinates and this will be covered later.

• Map the square −1,1 2to the rectangle −0.5,𝑛𝑛𝑥𝑥 − 0.5 × [−0.5,𝑛𝑛𝑦𝑦 − 0.5]

(-1,-1,-1)

(1,1,1)

x

y
z

Image (or window on the screen)

𝑛𝑛𝑥𝑥 pixels

𝑛𝑛𝑦𝑦 pixels

Raster Image (again)
• Ignore the z-coordinates of points for now

o In practice, we need the z-coordinates and this will be covered later.

• Map the square −1,1 2to the rectangle −0.5,𝑛𝑛𝑥𝑥 − 0.5 × [−0.5,𝑛𝑛𝑦𝑦 − 0.5]

• Where do we need to locate pixels in 2D space?

4x4 image
y

x(0,0)

x=-0.5 x=3.5
y=-0.5

y=3.5

Raster Image (again)
• Ignore the z-coordinates of points for now

o In practice, we need the z-coordinates and this will be covered later.

• Map the square −1,1 2to the rectangle −0.5,𝑛𝑛𝑥𝑥 − 0.5 × [−0.5,𝑛𝑛𝑦𝑦 − 0.5]

• Where do we need to locate pixels in 2D space?

• The rectangular domain of a 𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑦𝑦 image
o 𝑅𝑅 = −0.5,𝑛𝑛𝑥𝑥 − 0.5 × [−0.5,𝑛𝑛𝑦𝑦 − 0.5]

Viewport Transformation
• Ignore the z-coordinates of points for now

o In practice, we need the z-coordinates and this will be covered later.

• Map the square −1,1 2to the rectangle −0.5,𝑛𝑛𝑥𝑥 − 0.5 × [−0.5,𝑛𝑛𝑦𝑦 − 0.5]

• Q. How do we transform a rectangle to another rectangle?

Example: Windowing Transform
• Problem specification: move a 2D rectangle into a new position

y

x

(𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙)

(𝑥𝑥ℎ,𝑦𝑦ℎ) y

x

(𝑥𝑥𝑙𝑙′,𝑦𝑦𝑙𝑙′)

(𝑥𝑥ℎ′ ,𝑦𝑦ℎ′)

Example: Windowing Transform
• Problem specification: move a 2D rectangle into a new position

o Step1. translate: move the point 𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙 to the origin

y

x

(𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙)

(𝑥𝑥ℎ,𝑦𝑦ℎ) y

x

(𝑥𝑥ℎ − 𝑥𝑥𝑙𝑙 ,𝑦𝑦ℎ − 𝑦𝑦𝑙𝑙)

Example: Windowing Transform
• Problem specification: move a 2D rectangle into a new position

o Step2. scale: resize the rectangle to be the same size of the target.

y

x

y

x

(𝑥𝑥ℎ − 𝑥𝑥𝑙𝑙 ,𝑦𝑦ℎ − 𝑦𝑦𝑙𝑙)
(𝑥𝑥ℎ′ − 𝑥𝑥𝑙𝑙′,𝑦𝑦ℎ′ − 𝑦𝑦𝑙𝑙′)

Example: Windowing Transform
• Problem specification: move a 2D rectangle into a new position

o Step3. translate: move the origin to point (𝑥𝑥𝑙𝑙′,𝑦𝑦𝑙𝑙′)

y

x

y

x

(𝑥𝑥ℎ′ − 𝑥𝑥𝑙𝑙′,𝑦𝑦ℎ′ − 𝑦𝑦𝑙𝑙′)

(𝑥𝑥𝑙𝑙′,𝑦𝑦𝑙𝑙′)

(𝑥𝑥ℎ′ ,𝑦𝑦ℎ′)

Example: Windowing Transform
• Problem specification: move a 2D rectangle into a new position

o Target = translate(𝑥𝑥𝑙𝑙′,𝑦𝑦𝑙𝑙′) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑥𝑥ℎ
′ −𝑥𝑥𝑙𝑙

′

𝑥𝑥ℎ−𝑥𝑥𝑙𝑙
, 𝑦𝑦ℎ

′−𝑦𝑦𝑙𝑙
′

𝑦𝑦ℎ−𝑦𝑦𝑙𝑙
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(−𝑥𝑥𝑙𝑙 ,−𝑦𝑦𝑙𝑙)

o =
1 0 𝑥𝑥𝑙𝑙′

0 1 𝑦𝑦𝑙𝑙′
0 0 1

𝑥𝑥ℎ
′ −𝑥𝑥𝑙𝑙

′

𝑥𝑥ℎ−𝑥𝑥𝑙𝑙
0 0

0 𝑦𝑦ℎ
′−𝑦𝑦𝑙𝑙

′

𝑦𝑦ℎ−𝑦𝑦𝑙𝑙
0

0 0 1

1 0 −𝑥𝑥𝑙𝑙
0 1 −𝑦𝑦𝑙𝑙
0 0 1

o =

𝑥𝑥ℎ
′ −𝑥𝑥𝑙𝑙

′

𝑥𝑥ℎ−𝑥𝑥𝑙𝑙
0 𝑥𝑥𝑙𝑙

′𝑥𝑥ℎ−𝑥𝑥ℎ
′ 𝑥𝑥𝑙𝑙

𝑥𝑥ℎ−𝑥𝑥𝑙𝑙

0 𝑦𝑦ℎ
′−𝑦𝑦𝑙𝑙

′

𝑦𝑦ℎ−𝑦𝑦𝑙𝑙

𝑦𝑦𝑙𝑙
′𝑦𝑦ℎ−𝑦𝑦ℎ

′𝑦𝑦𝑙𝑙
𝑦𝑦ℎ−𝑦𝑦𝑙𝑙

0 0 1

Viewport Transformation
• Ignore the z-coordinates of points for now

o In practice, we need the z-coordinates and this will be covered later.

• Map the square −1,1 2to the rectangle −0.5,𝑛𝑛𝑥𝑥 − 0.5 × [−0.5,𝑛𝑛𝑦𝑦 − 0.5]

•
𝑥𝑥𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

1
=

𝑛𝑛𝑥𝑥
2

0 𝑛𝑛𝑥𝑥−1
2

0 𝑛𝑛𝑦𝑦
2

𝑛𝑛𝑦𝑦−1
2

0 0 1

𝑥𝑥𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

1

• For the case with z-coordinates,

o 𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =

𝑛𝑛𝑥𝑥
2

0

0 𝑛𝑛𝑦𝑦
2

0 𝑛𝑛𝑥𝑥−1
2

0 𝑛𝑛𝑦𝑦−1
2

0 0
0 0

1 0
0 1

Sequence of Spaces and Transformations
Object
space

Modeling
transformation

World space

Viewing
transformation

Eye (camera)
space

Projection
Transformation

Canonical view volume
(normalized device coordinates)

Viewport
Transformation

Screen space

Projections
• Transform 3D points in eye space to 2D points in image space

• Two types of projections
o Orthographic projection
o Perspective projection

Modeling
Transformation

Illumination

Viewing
Transformation

Clipping

Projection

Rasterization

Display

x

y

z

Orthographic Projection
• Assumption

o A viewer is looking along the minus z-axis with his head pointing in the y-direction
 Implies n > f

x

y

z
(l,b,n)

(r,t,f)

Orthographic Projection
• The view volume (orthographic view volume) is an axis-aligned box

o [l, r] x [b, t] x [f, n]

• Notations
o 𝑥𝑥 = 𝑙𝑙 ≡ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑥𝑥 = 𝑟𝑟 ≡ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

o 𝑦𝑦 = 𝑏𝑏 ≡ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑦𝑦 = 𝑡𝑡 ≡ 𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

o 𝑧𝑧 = 𝑛𝑛 ≡ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑧𝑧 = 𝑓𝑓 ≡ 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

x

y

z
(l,b,n)

(r,t,f)

Orthographic Projection
• Transform points in orthographic view volume to the canonical view volume

o Also windowing transform (3D)

(l,b,n)

(r,t,f)

(-1,-1,-1)

(1,1,1)

Projection
transformation

Orthographic Projection
• Transform points in orthographic view volume to the canonical view volume

o Also windowing transform (3D)
 Map a box 𝑥𝑥𝑙𝑙 , 𝑥𝑥ℎ × 𝑦𝑦𝑙𝑙 ,𝑦𝑦ℎ × 𝑧𝑧𝑙𝑙 , 𝑧𝑧ℎ to another box 𝑥𝑥𝑙𝑙′, 𝑥𝑥ℎ′ × 𝑦𝑦𝑙𝑙′,𝑦𝑦ℎ′ × [𝑧𝑧𝑙𝑙′, 𝑧𝑧ℎ′]



𝑥𝑥ℎ
′ −𝑥𝑥𝑙𝑙

′

𝑥𝑥ℎ−𝑥𝑥𝑙𝑙
0

0 𝑦𝑦ℎ
′−𝑦𝑦𝑙𝑙

′

𝑦𝑦ℎ−𝑦𝑦𝑙𝑙

0 𝑥𝑥𝑙𝑙
′𝑥𝑥ℎ−𝑥𝑥ℎ

′ 𝑥𝑥𝑙𝑙
𝑥𝑥ℎ−𝑥𝑥𝑙𝑙

0 𝑦𝑦𝑙𝑙
′𝑦𝑦ℎ−𝑦𝑦ℎ

′𝑦𝑦𝑙𝑙
𝑦𝑦ℎ−𝑦𝑦𝑙𝑙

0 0
0 0

𝑧𝑧ℎ
′−𝑧𝑧𝑙𝑙′
𝑧𝑧ℎ−𝑧𝑧𝑙𝑙

𝑧𝑧𝑙𝑙
′𝑧𝑧ℎ−𝑧𝑧ℎ

′ 𝑧𝑧𝑙𝑙
𝑧𝑧ℎ−𝑧𝑧𝑙𝑙

0 1

Orthographic Projection
• Transform points in orthographic view volume to the canonical view volume

o Also windowing transform (3D)

• 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =

2
𝑟𝑟−𝑙𝑙

0

0 2
𝑡𝑡−𝑏𝑏

0 −𝑟𝑟+𝑙𝑙
𝑟𝑟−𝑙𝑙

0 − 𝑡𝑡+𝑏𝑏
𝑡𝑡−𝑏𝑏

0 0
0 0

2
𝑛𝑛−𝑓𝑓

− 𝑛𝑛+𝑓𝑓
𝑛𝑛−𝑓𝑓

0 1

Composite Transformation
• The matrix that transforms points in world space to screen coordinate:

• 𝑀𝑀 = 𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

Orthographic Projection
• Transform points in orthographic view volume to the canonical view volume

o Also windowing transform (3D)

• Tend to ignore relative distances between objects and eye
o Unrealistic

• In practice,
o We usually do not use this projection.
o It can be useful in applications where relative lengths should be judged.

Orthographic Projection in OpenGL
• void glOrtho(GLdouble left, GLdouble right,

• GLdouble bottom, GLdouble top,

• GLdouble nearVal, GLdouble farVal);

(l,b,n)

(r,t,f)

Perspective Projection
• Objects in an image become smaller as their distance from the eye increases.

• History of perspective:
o Artists from the Renaissance period employed the perspective property.

Images from wikipedia

Perspective Projection
• Objects in an image become smaller as their distance from the eye increases.

• History of perspective:
o Artists from the Renaissance period employed the perspective property.

• In everyday life?

Perspective Projection
• 𝑦𝑦𝑠𝑠 = 𝑑𝑑

𝑧𝑧
𝑦𝑦

o 𝑦𝑦𝑠𝑠: y-axis coordinate in view plane
o y: distance of the point along the y-axis

d

vi
ew

 p
la

ne

e g

z

𝑦𝑦

𝑦𝑦𝑠𝑠

Homogeneous Coordinate
• Represent a point 𝑥𝑥,𝑦𝑦, 𝑧𝑧 with an extra coordinate w

o 𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤
o In the previous lecture, 𝑤𝑤 = 1

• Let’s define 𝑤𝑤 to be the denominator of the x-, y-, z-coordinates
o (𝑥𝑥, 𝑦𝑦, 𝑧𝑧,𝑤𝑤) represent the 3D point (𝑥𝑥

𝑤𝑤
, 𝑦𝑦
𝑤𝑤

, 𝑧𝑧
𝑤𝑤

)

o A special case, 𝑤𝑤 = 1, is still valid.

o 𝑤𝑤 can be any values

Projective Transform
• Let’s define 𝑤𝑤 to be the denominator of the x-, y-, z-coordinates

o (𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤) represent the 3D point (𝑥𝑥
𝑤𝑤

, 𝑦𝑦
𝑤𝑤

, 𝑧𝑧
𝑤𝑤

)

o A special case, 𝑤𝑤 = 1, is still valid.
o 𝑤𝑤 can be any values

• Projective transformation

o

�𝑥𝑥
�𝑦𝑦
𝑧̃𝑧
�𝑤𝑤

=

𝑎𝑎1 𝑏𝑏1
𝑎𝑎2 𝑏𝑏2

𝑐𝑐1 𝑑𝑑1
𝑐𝑐2 𝑑𝑑2

𝑎𝑎3 𝑏𝑏3
𝑒𝑒 𝑓𝑓

𝑐𝑐3 𝑑𝑑3
𝑔𝑔 ℎ

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

o 𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′ = (�𝑥𝑥
�𝑤𝑤

, �𝑦𝑦
�𝑤𝑤

, �𝑧𝑧
�𝑤𝑤

)

Perspective Projection
• Example with 2D homogeneous vector 𝑦𝑦 𝑧𝑧 1 𝑇𝑇

o
𝑦𝑦𝑠𝑠
1 = 𝑑𝑑 0 0

0 1 0

𝑦𝑦
𝑧𝑧
1

o This is corresponding to the perspective equation, 𝑦𝑦𝑠𝑠 = 𝑑𝑑
𝑧𝑧
𝑦𝑦.

Perspective Projection
• Some info. for perspective matrix

o Define our project plane as the near plane
o Distance to the near plane: −𝑛𝑛
o Distance to the far plane: −𝑓𝑓

• Perspective equation: 𝑦𝑦𝑠𝑠 = 𝑛𝑛
𝑧𝑧
𝑦𝑦

• Perspective matrix

o 𝑃𝑃 =
𝑛𝑛 0
0 𝑛𝑛

0 0
0 0

0 0
0 0

𝑛𝑛 + 𝑓𝑓 −𝑓𝑓𝑓𝑓
1 0

Perspective Projection
• Perspective matrix

o 𝑃𝑃 =
𝑛𝑛 0
0 𝑛𝑛

0 0
0 0

0 0
0 0

𝑛𝑛 + 𝑓𝑓 −𝑓𝑓𝑓𝑓
1 0

• A mapping with the perspective matrix:

o 𝑃𝑃

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

=

𝑛𝑛𝑥𝑥
𝑛𝑛𝑛𝑛

𝑛𝑛 + 𝑓𝑓 𝑧𝑧 − 𝑓𝑓𝑓𝑓
𝑧𝑧

=

𝑛𝑛𝑥𝑥
𝑧𝑧
𝑛𝑛𝑛𝑛
𝑧𝑧

𝑛𝑛 + 𝑓𝑓 − 𝑓𝑓𝑛𝑛
𝑧𝑧

1

Perspective Projection
• A mapping with the perspective matrix:

o 𝑃𝑃

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

=

𝑛𝑛𝑥𝑥
𝑛𝑛𝑛𝑛

𝑛𝑛 + 𝑓𝑓 𝑧𝑧 − 𝑓𝑓𝑓𝑓
𝑧𝑧

=

𝑛𝑛𝑥𝑥
𝑧𝑧
𝑛𝑛𝑛𝑛
𝑧𝑧

𝑛𝑛 + 𝑓𝑓 − 𝑓𝑓𝑛𝑛
𝑧𝑧

1

• Properties
o The first, second, and fourth rows are for the perspective equation.
o The third row is for keeping z coordinate at least approximately.

 E.g., when z = n, transformed z coordinate is still n.
 E.g., when 𝑧𝑧 > 𝑛𝑛, we cannot preserve the z coordinate exactly, but relative orders between points

will be preserved.

Perspective Projection
• Perspective matrix

o Map the perspective view volume to the orthographic view volume.

Composite Transformation
• The matrix that transforms points in world space to screen coordinate:

• 𝑀𝑀 = 𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑃𝑃𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

• 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑃𝑃 (perspective projection matrix)

 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 =

2𝑛𝑛
𝑟𝑟−𝑙𝑙

0

0 2𝑛𝑛
𝑡𝑡−𝑏𝑏

𝑙𝑙+𝑟𝑟
𝑙𝑙−𝑟𝑟

0
𝑏𝑏+𝑡𝑡
𝑏𝑏−𝑡𝑡

0

0 0
0 0

𝑓𝑓+𝑛𝑛
𝑛𝑛−𝑓𝑓

2𝑓𝑓𝑓𝑓
𝑓𝑓−𝑛𝑛

1 0

Perspective Projection in OpenGL
• void glFrustum(GLdouble left, GLdouble right,

• GLdouble bottom, GLdouble top,

• GLdouble nearVal, GLdouble farVal);

Perspective Projection in OpenGL
• void gluPerspective(GLdouble fovy, GLdouble aspect,

• GLdouble zNear, GLdouble zFar);

• Parameters
o fovy: field of view (in degrees) in the y direction

o aspect: aspect ratio is the ratio of x (width) to y (height)

• Symmetric constraints are implicitly applied.
o l = -r, b = -t

• A constraint to prevent image distortion

o 𝑛𝑛𝑥𝑥
𝑛𝑛𝑦𝑦

= 𝑟𝑟
𝑡𝑡 x

y

z

𝜃𝜃
2

Further Reading
• In our textbook, Fundamentals of Computer Graphics (4th edition)

o Chapter 7

	Projections
	Graphics Pipeline
	Sequence of Spaces and Transformations
	Sequence of Spaces and Transformations
	Canonical View Volume
	Viewport Transformation
	Viewport Transformation
	Raster Image (again)
	Raster Image (again)
	Viewport Transformation
	Example: Windowing Transform
	Example: Windowing Transform
	Example: Windowing Transform
	Example: Windowing Transform
	Example: Windowing Transform
	Viewport Transformation
	Sequence of Spaces and Transformations
	Projections
	Orthographic Projection
	Orthographic Projection
	Orthographic Projection
	Orthographic Projection
	Orthographic Projection
	Composite Transformation
	Orthographic Projection
	Orthographic Projection in OpenGL
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Homogeneous Coordinate
	Projective Transform
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Composite Transformation
	Perspective Projection in OpenGL
	Perspective Projection in OpenGL
	Further Reading

