Programming Assignment 4

2021 Computer Graphics

Submission

Deadline: 23:59:59, Sunday, June 20th, 2021 (KST, +0900)
 O Github server clock

- To submit your assignment, you **must** do two things. **Both of them must be done BEFORE deadline.**
- You should push your commit to your assignment repo before deadline.
 -Obviously, e- mail submission is not accepted
- 2. You should comment the last commit (before deadline) id (SHA-1 hash) in github issue board. (See next slide)
- The last commit **BEFORE** dead line will be considered as submitted assignment.
 - O Github server will track this for me.
 - Timestamp in your commit (local time) will be igrnoed. (I will use github server timestamp instead)

Commenting Commit ID 1/2

ት CGI	LAB-Classes / test2-lazysquid Priva	ate		O Unwatch → 1 ★ Star 0 Y Fork 0			
<> Co	ode ① Issues 1 î¹ Pull requests	0 III Projects 0	💷 Wiki 📊 Insights				
est2-l	azysquid created by GitHub Classroor	n					
	3 commits	រ្រៃ 1 branch	♡ 0 releases	🤽 1 contributor			
Branch	h: master 🕶 New pull request		Create new fi	ile Upload files Find File Clone or download -			
🔒 la	azysquid commit2			Latest commit c604214 3 hours ago			
README.md commit2			commit2	1. Go ^{3 10} to	your assig	gnment rep	ository
E RE	ADME.md			2. Click o	commits		
-0-	Commits on Mar 9, 2019			3 Click (onv butto	on of your l	ast commit
	commit2						
	commit 1	igo			ea587c0 ↔		
	Initial commit				F8b1e5d ↔		

Commenting Commit ID 2/2

Filters •	 Q is:issue is:open 	S Labels 8 ₱ Milestones 0	New issue
	Submit Write Preview	AA B <i>i "</i> ↔ ☜ ≔ ≔ ≝ ≝	1. Go to issue tab [®] № 2. Click "new issue"
	<u>c604214f6caaef9e22827010783d7716109a5fd8</u>		3. Paste your lastest commit id (Ctrl-v)
	Attach files by dragging & dropping, selecting them,	or pasting from the clipboard.	4. Click "submit new isse"
	Styling with Markdown is supported	Subr	nit new issue

Computer Graphics Laboratory

Policy

- In the following cases, your grade for this PA will be 0
- Late submission (Late push before deadline or Late last commit id comment on issue board)
- Build/execution failure
- Making public of your assignment repository
- If you tried to push your commit with force option(Tried to change history of remote server)

- Your final grade will be "F"
- Сору

Task List

- 1. Materials (10 Points)
 - Lambertian, Metal, Dielectric, Area light(Emissive material)
 - Implement **scatter** function in each material class
- 2. Antialiasing (5 Points)
- 3. Indirect lighting (5 Points)
 - Multiple bounces, depth > 10
- 4. Direct light sampling (5 Points)
- 5. Defocus blur (5 Points)
- 6. Report (10 Points)
 - For this time, you need to write detailed report.
 - Add teaser image whenever you add new features(e.g. complete your task) and explain about it

Initial Appearance

- Skeleton code: Neon renderer
- Unlike OpenGL project the result will be png file.
- output: *.png

Lambertian

• Perfect mirror vs metal (mirror with randomness)

dielectric material

- Light ball
- Perfect glass ball
- Perfect diffuse ball
- Glossy metal

Antialiasing

- Shoot multiple rays per pixel
- Final color will be average of those ray colors
- You can control this in rendering loop which is in main function.

http://www.cs.montana.edu/~halla/cs525/intro.html

Antialiasing

• 1spp vs 1024 spp (samples per pixel)

Indirect Lighting

- Simulate multiple bounce of light.
- You can see color bleeding(Diffusive interreflections) after this!
- See integrate method in integrator class to control this behavior

http://gurneyjourney.blogspot.com/2010/05/color-bleeding.html

Indirect Lighting

• See red color bleeding under the red sphere

Defocus Blur

- A.K.A Out focusing == Simulating lens effect
- Generate random 2d point and add to ray origin.

https://www.nebularender.com/gallery.ht ml

Defocus Blur

With Defocus Blur

w/o Defocus Blur

Direct Light Sampling

• You can remove these noises if you are using direct light sampling

PA4 Link

- 1. Login to github
- 2. Go to following link <u>https://classroom.github.com/a/EoH-aGPp</u>
- 3. Accept the assignment

