
Programming Assignment 4
COMPUTER GRAPHICS

Submission
Deadline: 23:59:59, Sunday, June 19th , 2020 (KST, +0900)
◦ Github server clock

To submit your assignment, you must do two things. Both of them must be done BEFORE deadline.

1. You should push your commit to your assignment repo before deadline.
-Obviously, e- mail submission is not accepted

2. You should comment the last commit (before deadline) id (SHA-1 hash) in github issue board. (See
next slide)

The last commit BEFORE dead line will be considered as submitted assignment.
◦ Github server will track this for me.
◦ Timestamp in your commit (local time) will be igrnoed. (I will use github server timestamp instead)

Commenting Commit ID 1/2

1. Go to your assignment repository
2. Click commits
3. Click copy button of your last commit

Commenting Commit ID 2/2

1. Go to issue tab
2. Click “new issue”
3. Paste your lastest commit id

(Ctrl-v)
4. Click “submit new isse”

Policy
In the following cases, your grade for this PA will be 0

• Late submission (Late push before deadline or Late last commit id comment on issue board)

• Build/execution failure

• Making public of your assignment repository

• If you tried to push your commit with force option(Tried to change history of remote server)

Your final grade will be “F”

• Copy

Neon
• A minimal ray tracer written in C++

• Base code for assignment 4

 Ray tracer

- Physically based rendering (pbrt)

(https://pbrt.org/)

- Mitsuba renderer

(https://www.mitsuba-renderer.org/download.html)

https://pbrt.org/
https://www.mitsuba-renderer.org/download.html

Structure
2 project

• neon

- image.hpp; read and write images and so on

- image.cpp

- integrator.cpp; return light contribution of a path

- integrator.hpp

- scene.hpp ; sample direct light

- scene.cpp

• neon-sandbox
- test.hpp ; scene definition (objects, materials)
- test.cpp
- main.cpp ; rendering loop

- sphere.hpp ; ray intersection test for sphere obj
- sphere.cpp
- intersection.hpp; record information of the hit point
- rendable.hpp
- ray.hpp ;
- material.hpp ;material properties such as scattering
- material.cpp
- utils.hpp
- utils.cpp

- camera.hpp; camera properties such as lens radius, fov
- blueprint.hpp

Build
• You can build Neon as same with glsekeleton (cmake)

• Run Neon, then a output will be a image (*.png)

Task List
1. Materials (10 Points)

• Lambertian, Metal, Dielectric, Area light(Emissive material)
• Implement scatter function in each material class

2. Antialiasing (5 Points)

3. Indirect lighting (5 Points)
• Multiple bounces, depth > 10

4. Direct light sampling (5 Points)

5. Defocus blur (5 Points)

6. Report (10 Points)
• For this time, you need to write detailed report.
• Add teaser image whenever you add new features(e.g. complete your task) and explain about it

Initial Appearance
• Skeleton code: Neon renderer

• Unlike OpenGL project the result will be png file.

- output: *.png

Materials

https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading

Metal(Mirror reflection with some randomness)
DielectricLambertian (diffuse)

See scatter method in each material class

Materials

Lambertian

Materials
Perfect mirror vs metal (mirror with randomness)

Materials

dielectric material

Materials
• Light ball

• Perfect glass ball

• Perfect diffuse ball

• Glossy metal

Antialiasing
• Shoot multiple rays per pixel

• Final color will be average of those ray colors

• You can control this in rendering loop which is in main function.

http://www.cs.montana.edu/~halla/cs525/intro.html

http://www.cs.montana.edu/%7Ehalla/cs525/intro.html

Antialiasing
1spp vs 1024 spp (samples per pixel)

Indirect Lighting
Simulate multiple bounce of light.

You can see color bleeding(Diffusive interreflections) after this!

See integrate method in integrator class to control this behavior

http://gurneyjourney.blogspot.com/2010/05/color-bleeding.htmlhttps://www.pinterest.co.kr/pin/362117626263103458/

http://gurneyjourney.blogspot.com/2010/05/color-bleeding.html
https://www.pinterest.co.kr/pin/362117626263103458/

Indirect Lighting
See red color bleeding under the red sphere

Defocus Blur
A.K.A Out focusing == Simulating lens effect

Generate random 2d point and add to ray origin.

See camera class to implement this

https://www.nebularender.com/gallery.htmlhttps://steveharveynz.wordpress.com/2012/12/21/ray-tracer-part-5-depth-of-field/

https://www.nebularender.com/gallery.html
https://steveharveynz.wordpress.com/2012/12/21/ray-tracer-part-5-depth-of-field/

Defocus Blur

Direct Light Sampling
You can remove these noises if you are using direct light sampling

Scenes
To test the direct illumination, please use ‘testScene2’

// create scene
std::shared_ptr<ne::Scene> scene = testScene2();

PA4 Link
1. Login to github

2. Go to following link – https://classroom.github.com/a/IpWatugl

3. Accept the assignment

	Programming Assignment 4
	Submission
	Commenting Commit ID 1/2
	Commenting Commit ID 2/2
	Policy
	Neon
	Structure
	Build
	Task List
	Initial Appearance
	Materials
	Materials
	Materials
	Materials
	Materials
	Antialiasing
	Antialiasing
	Indirect Lighting
	Indirect Lighting
	Defocus Blur
	Defocus Blur
	Direct Light Sampling
	Scenes
	PA4 Link

