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Ray Tracing
• A rendering technique:
◦ Produce a 2D image from a scene (models)

• Image-order rendering:
◦ Loop over pixels to decide pixel colors

• Object-order rendering:
◦ Iterate objects and compute some pixel colors related to each object
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Basic Ray Tracer
• Ray generation
◦ Compute the origin and direction of a ray per pixel, by considering the camera and 

image plane



• Ray intersection
◦ Find the closest intersection point between the ray and objects

Basic Ray Tracer



Basic Ray Tracer
• Shading
◦ Compute the pixel color using the geometry, material, and lights at the intersection 

point



Basic Ray Tracer
• For each pixel do
◦ Compute a primary ray (viewing ray)
◦ Find the closest intersection point between the ray and a scene
◦ Determine a pixel color



Primary Ray Generation
• Mathematical representation for a ray
◦ 3D parametric line: 𝒑𝒑 𝑡𝑡 = 𝒆𝒆 + 𝑡𝑡(𝒔𝒔 − 𝒆𝒆)

• Properties
◦ 𝒑𝒑 0 = 𝒆𝒆, 𝒑𝒑 1 = 𝒔𝒔
◦ 𝒑𝒑(𝑡𝑡1) is closer to the eye than 𝒑𝒑(𝑡𝑡2) when 0 < 𝑡𝑡1 < 𝑡𝑡2
◦ When 𝑡𝑡 < 0,𝒑𝒑 𝑡𝑡 is behind the eye
◦ 𝒆𝒆 is a given value

• Q. How can we compute s? 

𝒆𝒆
s



Primary Ray Generation
• Mathematical representation for a ray
◦ 3D parametric line: 𝒑𝒑 𝑡𝑡 = 𝒆𝒆 + 𝑡𝑡(𝒔𝒔 − 𝒆𝒆)

• 𝒖𝒖,𝒗𝒗,𝒘𝒘 forms a right-handed coordinate system

• Two kinds of views
◦ Orthographic view
◦ Perspective view

𝒆𝒆
View direction
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Orthographic Views
• All primary rays have the same direction, -w

• The primary ray starts on the image plane defined by e, u, v

• The image plane is defined with four numbers:
◦ l, r: positions of left and right edges of the image plane 
◦ b, t:  positions of bottom and top edges

• To make an image with 𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑦𝑦
◦ Pixels are spaced as the following:

◦ 𝑟𝑟−𝑙𝑙
𝑛𝑛𝑥𝑥

horizontally, 𝑡𝑡−𝑏𝑏
𝑛𝑛𝑦𝑦

vertically

• Position (𝛼𝛼,𝛽𝛽) in the image plane is corresponding to a pixel (𝑖𝑖, 𝑗𝑗) in the 
raster image:

◦ 𝛼𝛼 = 𝑙𝑙 + 𝑟𝑟−𝑙𝑙 𝑖𝑖+0.5
𝑛𝑛𝑥𝑥

◦ 𝛽𝛽 = 𝑏𝑏 + 𝑡𝑡−𝑏𝑏 𝑗𝑗+0.5
𝑛𝑛𝑦𝑦

◦ (𝛼𝛼,𝛽𝛽) are the coordinates of the pixel’s position on the image plane

𝒆𝒆

𝒘𝒘

𝒗𝒗
𝒖𝒖



Orthographic Views
• Procedure to generate orthographic viewing rays

◦ Compute 𝛼𝛼 and 𝛽𝛽

◦ 𝛼𝛼 = 𝑙𝑙 + 𝑟𝑟−𝑙𝑙 𝑖𝑖+0.5
𝑛𝑛𝑥𝑥

◦ 𝛽𝛽 = 𝑏𝑏 + 𝑡𝑡−𝑏𝑏 𝑗𝑗+0.5
𝑛𝑛𝑦𝑦

• 𝑟𝑟𝑟𝑟𝑟𝑟.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≔ −𝒘𝒘

• 𝑟𝑟𝑟𝑟𝑟𝑟. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≔ 𝒆𝒆 + 𝛼𝛼𝒖𝒖 + 𝛽𝛽𝒗𝒗

• Properties
◦ Same direction for all rays
◦ Different origins for rays 𝒆𝒆

𝒘𝒘

𝒗𝒗
𝒖𝒖



Perspective Views
• All rays have the same origin, e, but have different directions

• The image plane is placed with a distance, d, in front of e
◦ d: image plane distance (called the focal length)

• Procedure to generate perspective viewing rays
◦ Compute 𝛼𝛼 and 𝛽𝛽

◦ 𝛼𝛼 = 𝑙𝑙 + 𝑟𝑟−𝑙𝑙 𝑖𝑖+0.5
𝑛𝑛𝑥𝑥

◦ 𝛽𝛽 = 𝑏𝑏 + 𝑡𝑡−𝑏𝑏 𝑗𝑗+0.5
𝑛𝑛𝑦𝑦

• 𝑟𝑟𝑟𝑟𝑟𝑟.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≔ −𝑑𝑑𝒘𝒘 + 𝛼𝛼𝒖𝒖 + 𝛽𝛽𝒗𝒗

• 𝑟𝑟𝑟𝑟𝑟𝑟. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≔ 𝒆𝒆

𝒆𝒆
𝒘𝒘

𝒗𝒗

𝒖𝒖
𝑑𝑑



Intersection between Ray and Object

• Generated ray: 𝐩𝐩 t = 𝒆𝒆 + 𝑡𝑡𝒅𝒅

• The next task is to find the closest intersection point between a ray and objects
◦ i.e., need to find a t in the interval 𝑡𝑡0, 𝑡𝑡1 (e.g., [0, +∞])

• Objects
◦ Sphere
◦ Triangle
◦ Multiple objects



Intersection between Ray and Sphere

• Ray: 𝒑𝒑 𝑡𝑡 = 𝒆𝒆 + 𝑡𝑡𝒅𝒅

• Implicit surface: 𝑓𝑓 𝒑𝒑 = 0

• Intersection points should satisfy both equations
◦ 𝑓𝑓 𝒑𝒑 𝑡𝑡 = 𝑓𝑓 𝒆𝒆 + 𝑡𝑡𝒅𝒅 = 0

• Let’s define a sphere with center 𝑐𝑐 = 𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐 , 𝑧𝑧𝑐𝑐 and radius r
◦ 𝑥𝑥 − 𝑥𝑥𝑐𝑐 2 + 𝑦𝑦 − 𝑦𝑦𝑐𝑐 2 + 𝑧𝑧 − 𝑧𝑧𝑐𝑐 2 − 𝑟𝑟2 = 0
◦ 𝒑𝒑 − 𝒄𝒄 � 𝒑𝒑 − 𝒄𝒄 − 𝑟𝑟2 = 0 (vector form)
◦ A point p that satisfies this equation is on the sphere

• By plug-in the parametric ray equation,
◦ 𝒆𝒆 + 𝑡𝑡𝒅𝒅 − 𝒄𝒄 � 𝒆𝒆 + 𝑡𝑡𝒅𝒅 − 𝒄𝒄 − 𝑟𝑟2 = 0
◦ By rearranging terms with respect to t (unknown value):
◦ 𝒅𝒅 � 𝒅𝒅 𝑡𝑡2 + 2𝒅𝒅 � 𝒆𝒆 − 𝒄𝒄 𝑡𝑡 + 𝒆𝒆 − 𝒄𝒄 � 𝒆𝒆 − 𝒄𝒄 − 𝑟𝑟2 = 0



Intersection between Ray and Sphere

• A quadratic equation in t
◦ 𝒅𝒅 � 𝒅𝒅 𝑡𝑡2 + 2𝒅𝒅 � 𝒆𝒆 − 𝒄𝒄 𝑡𝑡 + 𝒆𝒆 − 𝒄𝒄 � 𝒆𝒆 − 𝒄𝒄 − 𝑟𝑟2 = 0

• The solutions for 𝑎𝑎𝑡𝑡2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0

◦ 𝑡𝑡 = −𝑏𝑏± 𝑏𝑏2−4𝑎𝑎𝑎𝑎
2𝑎𝑎

◦ 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎 (called discriminant)
◦ When 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎 < 0, there is no solution (the ray does not intersect with the sphere)
◦ When 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎 = 0, a solution exists (the ray touches the sphere)
◦ When 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎 > 0, two solutions exist (the ray enters and leaves the sphere)

• 𝑡𝑡 =
−𝒅𝒅� 𝒆𝒆−𝒄𝒄 ± 𝒅𝒅� 𝒆𝒆−𝒄𝒄 2− 𝒅𝒅�𝒅𝒅 𝒆𝒆−𝒄𝒄 � 𝒆𝒆−𝒄𝒄 −𝑟𝑟2

𝒅𝒅�𝒅𝒅



Intersection between Ray and Triangle

• Ray: 𝐩𝐩 t = 𝒆𝒆 + 𝑡𝑡𝒅𝒅

• Intersection point:
◦ 𝒆𝒆 + 𝑡𝑡𝒅𝒅 = 𝒂𝒂 + 𝛽𝛽 𝒃𝒃 − 𝒂𝒂 + 𝛾𝛾(𝒄𝒄 − 𝒂𝒂)

• Solving the equation for 𝑡𝑡,𝛽𝛽, 𝛾𝛾:
◦ 𝑥𝑥𝑒𝑒 + 𝑡𝑡𝑥𝑥𝑑𝑑 = 𝑥𝑥𝑎𝑎 + 𝛽𝛽 𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑎𝑎 + 𝑟𝑟(𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑎𝑎)
◦ 𝑦𝑦𝑒𝑒 + 𝑡𝑡𝑦𝑦𝑑𝑑 = 𝑦𝑦𝑎𝑎 + 𝛽𝛽 𝑦𝑦𝑏𝑏 − 𝑦𝑦𝑎𝑎 + 𝑟𝑟(𝑦𝑦𝑐𝑐 − 𝑦𝑦𝑎𝑎)
◦ 𝑧𝑧𝑒𝑒 + 𝑡𝑡𝑧𝑧𝑑𝑑 = 𝑧𝑧𝑎𝑎 + 𝛽𝛽 𝑧𝑧𝑏𝑏 − 𝑧𝑧𝑎𝑎 + 𝑟𝑟(𝑧𝑧𝑐𝑐 − 𝑧𝑧𝑎𝑎)

◦ Can be rewritten:

◦
𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑏𝑏 𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑐𝑐 𝑥𝑥𝑑𝑑
𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑏𝑏
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑏𝑏

𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑐𝑐
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑐𝑐

𝑦𝑦𝑑𝑑
𝑧𝑧𝑑𝑑

𝛽𝛽
𝛾𝛾
𝑡𝑡

=
𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑒𝑒
𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑒𝑒
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑒𝑒

𝒆𝒆

a

c

b



Intersection between Ray and Triangle

• Cramer’s rule can be utilized to solve the 3 x 3 linear system

◦
𝑎𝑎1 𝑏𝑏1 𝑐𝑐1
𝑎𝑎2
𝑎𝑎3

𝑏𝑏2
𝑏𝑏3

𝑐𝑐2
𝑐𝑐3

𝑥𝑥
𝑦𝑦
𝑧𝑧

=
𝑑𝑑1
𝑑𝑑2
𝑑𝑑3

◦ 𝑥𝑥 =

𝑑𝑑1 𝑏𝑏1 𝑐𝑐1
𝑑𝑑2
𝑑𝑑3

𝑏𝑏2
𝑏𝑏3

𝑐𝑐2
𝑐𝑐3

𝐴𝐴
,      𝑦𝑦 =

𝑎𝑎1 𝑑𝑑1 𝑐𝑐1
𝑎𝑎2
𝑎𝑎3

𝑑𝑑2
𝑑𝑑3

𝑐𝑐2
𝑐𝑐3

𝐴𝐴
,          𝑧𝑧 =

𝑎𝑎1 𝑏𝑏1 𝑑𝑑1
𝑎𝑎2
𝑎𝑎3

𝑏𝑏2
𝑏𝑏3

𝑑𝑑2
𝑑𝑑3

𝐴𝐴

◦ where 𝐴𝐴 =
𝑎𝑎1 𝑏𝑏1 𝑐𝑐1
𝑎𝑎2
𝑎𝑎3

𝑏𝑏2
𝑏𝑏3

𝑐𝑐2
𝑐𝑐3

, |.| is the determinant

◦ 𝐴𝐴 = 𝑎𝑎1
𝑏𝑏2 𝑐𝑐2
𝑏𝑏3 𝑐𝑐3

− 𝑏𝑏1
𝑎𝑎2 𝑐𝑐2
𝑎𝑎3 𝑐𝑐3 + 𝑐𝑐1

𝑎𝑎2 𝑏𝑏2
𝑎𝑎3 𝑏𝑏3

◦
𝑏𝑏2 𝑐𝑐2
𝑏𝑏3 𝑐𝑐3

= 𝑏𝑏2𝑐𝑐3 − 𝑐𝑐2𝑏𝑏3

𝒗𝒗𝟏𝟏

𝒗𝒗𝟐𝟐

|𝒗𝒗𝟏𝟏𝒗𝒗𝟐𝟐|



Intersection between Ray and Triangle

◦
𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑏𝑏 𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑐𝑐 𝑥𝑥𝑑𝑑
𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑏𝑏
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑏𝑏

𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑐𝑐
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑐𝑐

𝑦𝑦𝑑𝑑
𝑧𝑧𝑑𝑑

𝛽𝛽
𝛾𝛾
𝑡𝑡

=
𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑒𝑒
𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑒𝑒
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑒𝑒

◦ 𝛽𝛽 =

𝑥𝑥𝑎𝑎−𝑥𝑥𝑒𝑒 𝑥𝑥𝑎𝑎−𝑥𝑥𝑐𝑐 𝑥𝑥𝑑𝑑
𝑦𝑦𝑎𝑎−𝑦𝑦𝑒𝑒
𝑧𝑧𝑎𝑎−𝑧𝑧𝑒𝑒

𝑦𝑦𝑎𝑎−𝑦𝑦𝑐𝑐
𝑧𝑧𝑎𝑎−𝑧𝑧𝑐𝑐

𝑦𝑦𝑑𝑑
𝑧𝑧𝑑𝑑

|𝐴𝐴|

◦ 𝛾𝛾 =

𝑥𝑥𝑎𝑎−𝑥𝑥𝑏𝑏 𝑥𝑥𝑎𝑎−𝑥𝑥𝑒𝑒 𝑥𝑥𝑑𝑑
𝑦𝑦𝑎𝑎−𝑦𝑦𝑏𝑏
𝑧𝑧𝑎𝑎−𝑧𝑧𝑏𝑏

𝑦𝑦𝑎𝑎−𝑦𝑦𝑒𝑒
𝑧𝑧𝑎𝑎−𝑧𝑧𝑒𝑒

𝑦𝑦𝑑𝑑
𝑧𝑧𝑑𝑑

|𝐴𝐴|

◦ 𝑡𝑡 =

𝑥𝑥𝑎𝑎−𝑥𝑥𝑏𝑏 𝑥𝑥𝑎𝑎−𝑥𝑥𝑐𝑐 𝑥𝑥𝑎𝑎−𝑥𝑥𝑒𝑒
𝑦𝑦𝑎𝑎−𝑦𝑦𝑏𝑏
𝑧𝑧𝑎𝑎−𝑧𝑧𝑏𝑏

𝑦𝑦𝑎𝑎−𝑦𝑦𝑐𝑐
𝑧𝑧𝑎𝑎−𝑧𝑧𝑐𝑐

𝑦𝑦𝑎𝑎−𝑦𝑦𝑒𝑒
𝑧𝑧𝑎𝑎−𝑧𝑧𝑒𝑒

|𝐴𝐴|

◦ where 𝐴𝐴 =
𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑏𝑏 𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑐𝑐 𝑥𝑥𝑑𝑑
𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑏𝑏
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑏𝑏

𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑐𝑐
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑐𝑐

𝑦𝑦𝑑𝑑
𝑧𝑧𝑑𝑑

𝒆𝒆

a

c

b



Intersection between Ray and Triangle

• Procedure (with early termination) for finding the intersection:
◦ Input: a ray, vertex a, b, c, interval 𝑡𝑡0, 𝑡𝑡1

◦ Compute t
◦ If (𝑡𝑡 < 𝑡𝑡0) or (𝑡𝑡 > 𝑡𝑡1) then
◦ return false

◦ Compute 𝛾𝛾
◦ If (𝛾𝛾 < 0) or (𝛾𝛾 > 1) then
◦ return false

◦ Compute 𝛽𝛽
◦ If (𝛽𝛽 < 0) or (𝛽𝛽 > 1 − 𝛾𝛾) then
◦ return false

◦ return true

𝒆𝒆

a

c

b



Intersection between Ray and Objects

• Procedure for finding the closest intersection:

◦ hit = false
◦ For each object o do

◦ If (o is intersected with the ray at a parameter t and 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡1]) then
◦ hit = true
◦ store some information (e.g., o, normal, etc.) for shading
◦ 𝑡𝑡1 = 𝑡𝑡

◦ return hit



Basic Ray Tracer
• For each pixel do
◦ Compute a primary ray (viewing ray)
◦ Find the closest intersection point between the ray and a scene
◦ Determine a pixel color 
◦ e.g., we can apply the Phong illumination model here



Basic Ray Tracer
• For each pixel do
◦ Compute a primary ray (viewing ray)
◦ If (ray intersects an object with 𝑡𝑡 ∈ 0,∞ ) then
◦ Compute a hit record that contains some information (normal, materials, …)
◦ Evaluate an illumination model and set a pixel color 

◦ Else
◦ Set a pixel color to background color



Shadows
• Assume there are two intersection points, p and q
◦ p is in shadow, but q is not in shadow

• Rays to determine whether or not the point is in shadow are shadow rays
◦ Generate a shadow ray similar to the primary ray
◦ Check there is any hit between the origin and light
◦ 𝑡𝑡 = [𝑡𝑡0, 𝑡𝑡1]

◦ e.g., 𝑡𝑡 = [0, 𝑡𝑡1]

pq



Shadows
• Assume there are two intersection points, p and q
◦ p is in shadow, but q is not in shadow

• Rays to determine whether or not the point is in shadow are shadow rays
◦ Generate a shadow ray similar to the primary ray
◦ Check there is any hit between the origin and light
◦ 𝑡𝑡 = [𝑡𝑡0, 𝑡𝑡1]

◦ Due to numerical issues, the shadow ray can intersect the surface on which 
the point lies 
◦ A naïve but common approach is to add an offset
◦ 𝑡𝑡 = [𝜖𝜖, 𝑡𝑡1]

q

𝒒𝒒 + 𝝐𝝐𝝐𝝐

𝒍𝒍



Shadows
• Pseudocode to implement shadows (based on the Phong illumination)

• Input: a ray 𝒆𝒆 + 𝑡𝑡𝒅𝒅, 𝑡𝑡0 = 0, 𝑡𝑡1 = ∞

• If (there is a hit between the ray and objects) then
◦ 𝒑𝒑 = 𝒆𝒆 + 𝑡𝑡𝒅𝒅 // p is the closest intersection from e
◦ 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 = (𝟎𝟎,𝟎𝟎,𝟎𝟎)
◦ If (there is no hit between the shadow ray and a light) then
◦ 𝒄𝒄 = 𝒄𝒄 + 𝒌𝒌𝒂𝒂𝑳𝑳𝒂𝒂 + 𝑳𝑳𝒅𝒅𝒌𝒌𝒅𝒅 max 0,𝒏𝒏 � 𝒍𝒍 + 𝑳𝑳𝒔𝒔𝒌𝒌𝒔𝒔 max 0, 𝒓𝒓 � 𝒗𝒗 𝑠𝑠

◦ return c

• Else
◦ return background color



Some History of Ray Tracing
• Rene Descartes (1637) used ray tracing to explain the phenomena of rainbow

• In rendering, the ray casting was presented by Arthur Appel (1968)
◦ Ray casting (discussed so far) tends to be interchangeable to ray tracing

◦ Ray tracing generates additional rays (e.g., secondary rays) to simulate global 
illumination effects

◦ Ray tracing becomes popular due to the Whitted’s paper (1980)
◦ T. Whitted. An improved illumination model for shading display. Communications of 

the ACM, 23(6):343–349, 1980



Further Readings
• Chapter 4
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