
CT4201/EC4215: Computer Graphics

Ray Tracing
BOCHANG MOON

Ray Tracing
• A rendering technique:
◦ Produce a 2D image from a scene (models)

• Image-order rendering:
◦ Loop over pixels to decide pixel colors

• Object-order rendering:
◦ Iterate objects and compute some pixel colors related to each object

Rendering
light

3D objects

eye

Ray Tracing

pixel color

light

3D objects

eye

Ray Tracing
light

3D objects

eye

Basic Ray Tracer
• Ray generation
◦ Compute the origin and direction of a ray per pixel, by considering the camera and

image plane

• Ray intersection
◦ Find the closest intersection point between the ray and objects

Basic Ray Tracer

Basic Ray Tracer
• Shading
◦ Compute the pixel color using the geometry, material, and lights at the intersection

point

Basic Ray Tracer
• For each pixel do
◦ Compute a primary ray (viewing ray)
◦ Find the closest intersection point between the ray and a scene
◦ Determine a pixel color

Primary Ray Generation
• Mathematical representation for a ray
◦ 3D parametric line: 𝒑𝒑 𝑡𝑡 = 𝒆𝒆 + 𝑡𝑡(𝒔𝒔 − 𝒆𝒆)

• Properties
◦ 𝒑𝒑 0 = 𝒆𝒆, 𝒑𝒑 1 = 𝒔𝒔
◦ 𝒑𝒑(𝑡𝑡1) is closer to the eye than 𝒑𝒑(𝑡𝑡2) when 0 < 𝑡𝑡1 < 𝑡𝑡2
◦ When 𝑡𝑡 < 0,𝒑𝒑 𝑡𝑡 is behind the eye
◦ 𝒆𝒆 is a given value

• Q. How can we compute s?

𝒆𝒆
s

Primary Ray Generation
• Mathematical representation for a ray
◦ 3D parametric line: 𝒑𝒑 𝑡𝑡 = 𝒆𝒆 + 𝑡𝑡(𝒔𝒔 − 𝒆𝒆)

• 𝒖𝒖,𝒗𝒗,𝒘𝒘 forms a right-handed coordinate system

• Two kinds of views
◦ Orthographic view
◦ Perspective view

𝒆𝒆
View direction

Up vector

𝒘𝒘

−𝒘𝒘

𝒗𝒗

𝒖𝒖

Orthographic Views
• All primary rays have the same direction, -w

• The primary ray starts on the image plane defined by e, u, v

• The image plane is defined with four numbers:
◦ l, r: positions of left and right edges of the image plane
◦ b, t: positions of bottom and top edges

• To make an image with 𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑦𝑦
◦ Pixels are spaced as the following:

◦ 𝑟𝑟−𝑙𝑙
𝑛𝑛𝑥𝑥

horizontally, 𝑡𝑡−𝑏𝑏
𝑛𝑛𝑦𝑦

vertically

• Position (𝛼𝛼,𝛽𝛽) in the image plane is corresponding to a pixel (𝑖𝑖, 𝑗𝑗) in the
raster image:

◦ 𝛼𝛼 = 𝑙𝑙 + 𝑟𝑟−𝑙𝑙 𝑖𝑖+0.5
𝑛𝑛𝑥𝑥

◦ 𝛽𝛽 = 𝑏𝑏 + 𝑡𝑡−𝑏𝑏 𝑗𝑗+0.5
𝑛𝑛𝑦𝑦

◦ (𝛼𝛼,𝛽𝛽) are the coordinates of the pixel’s position on the image plane

𝒆𝒆

𝒘𝒘

𝒗𝒗
𝒖𝒖

Orthographic Views
• Procedure to generate orthographic viewing rays

◦ Compute 𝛼𝛼 and 𝛽𝛽

◦ 𝛼𝛼 = 𝑙𝑙 + 𝑟𝑟−𝑙𝑙 𝑖𝑖+0.5
𝑛𝑛𝑥𝑥

◦ 𝛽𝛽 = 𝑏𝑏 + 𝑡𝑡−𝑏𝑏 𝑗𝑗+0.5
𝑛𝑛𝑦𝑦

• 𝑟𝑟𝑟𝑟𝑟𝑟.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≔ −𝒘𝒘

• 𝑟𝑟𝑟𝑟𝑟𝑟. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≔ 𝒆𝒆 + 𝛼𝛼𝒖𝒖 + 𝛽𝛽𝒗𝒗

• Properties
◦ Same direction for all rays
◦ Different origins for rays 𝒆𝒆

𝒘𝒘

𝒗𝒗
𝒖𝒖

Perspective Views
• All rays have the same origin, e, but have different directions

• The image plane is placed with a distance, d, in front of e
◦ d: image plane distance (called the focal length)

• Procedure to generate perspective viewing rays
◦ Compute 𝛼𝛼 and 𝛽𝛽

◦ 𝛼𝛼 = 𝑙𝑙 + 𝑟𝑟−𝑙𝑙 𝑖𝑖+0.5
𝑛𝑛𝑥𝑥

◦ 𝛽𝛽 = 𝑏𝑏 + 𝑡𝑡−𝑏𝑏 𝑗𝑗+0.5
𝑛𝑛𝑦𝑦

• 𝑟𝑟𝑟𝑟𝑟𝑟.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≔ −𝑑𝑑𝒘𝒘 + 𝛼𝛼𝒖𝒖 + 𝛽𝛽𝒗𝒗

• 𝑟𝑟𝑟𝑟𝑟𝑟. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≔ 𝒆𝒆

𝒆𝒆
𝒘𝒘

𝒗𝒗

𝒖𝒖
𝑑𝑑

Intersection between Ray and Object

• Generated ray: 𝐩𝐩 t = 𝒆𝒆 + 𝑡𝑡𝒅𝒅

• The next task is to find the closest intersection point between a ray and objects
◦ i.e., need to find a t in the interval 𝑡𝑡0, 𝑡𝑡1 (e.g., [0, +∞])

• Objects
◦ Sphere
◦ Triangle
◦ Multiple objects

Intersection between Ray and Sphere

• Ray: 𝒑𝒑 𝑡𝑡 = 𝒆𝒆 + 𝑡𝑡𝒅𝒅

• Implicit surface: 𝑓𝑓 𝒑𝒑 = 0

• Intersection points should satisfy both equations
◦ 𝑓𝑓 𝒑𝒑 𝑡𝑡 = 𝑓𝑓 𝒆𝒆 + 𝑡𝑡𝒅𝒅 = 0

• Let’s define a sphere with center 𝑐𝑐 = 𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐 , 𝑧𝑧𝑐𝑐 and radius r
◦ 𝑥𝑥 − 𝑥𝑥𝑐𝑐 2 + 𝑦𝑦 − 𝑦𝑦𝑐𝑐 2 + 𝑧𝑧 − 𝑧𝑧𝑐𝑐 2 − 𝑟𝑟2 = 0
◦ 𝒑𝒑 − 𝒄𝒄 � 𝒑𝒑 − 𝒄𝒄 − 𝑟𝑟2 = 0 (vector form)
◦ A point p that satisfies this equation is on the sphere

• By plug-in the parametric ray equation,
◦ 𝒆𝒆 + 𝑡𝑡𝒅𝒅 − 𝒄𝒄 � 𝒆𝒆 + 𝑡𝑡𝒅𝒅 − 𝒄𝒄 − 𝑟𝑟2 = 0
◦ By rearranging terms with respect to t (unknown value):
◦ 𝒅𝒅 � 𝒅𝒅 𝑡𝑡2 + 2𝒅𝒅 � 𝒆𝒆 − 𝒄𝒄 𝑡𝑡 + 𝒆𝒆 − 𝒄𝒄 � 𝒆𝒆 − 𝒄𝒄 − 𝑟𝑟2 = 0

Intersection between Ray and Sphere

• A quadratic equation in t
◦ 𝒅𝒅 � 𝒅𝒅 𝑡𝑡2 + 2𝒅𝒅 � 𝒆𝒆 − 𝒄𝒄 𝑡𝑡 + 𝒆𝒆 − 𝒄𝒄 � 𝒆𝒆 − 𝒄𝒄 − 𝑟𝑟2 = 0

• The solutions for 𝑎𝑎𝑡𝑡2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0

◦ 𝑡𝑡 = −𝑏𝑏± 𝑏𝑏2−4𝑎𝑎𝑎𝑎
2𝑎𝑎

◦ 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎 (called discriminant)
◦ When 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎 < 0, there is no solution (the ray does not intersect with the sphere)
◦ When 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎 = 0, a solution exists (the ray touches the sphere)
◦ When 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎 > 0, two solutions exist (the ray enters and leaves the sphere)

• 𝑡𝑡 =
−𝒅𝒅� 𝒆𝒆−𝒄𝒄 ± 𝒅𝒅� 𝒆𝒆−𝒄𝒄 2− 𝒅𝒅�𝒅𝒅 𝒆𝒆−𝒄𝒄 � 𝒆𝒆−𝒄𝒄 −𝑟𝑟2

𝒅𝒅�𝒅𝒅

Intersection between Ray and Triangle

• Ray: 𝐩𝐩 t = 𝒆𝒆 + 𝑡𝑡𝒅𝒅

• Intersection point:
◦ 𝒆𝒆 + 𝑡𝑡𝒅𝒅 = 𝒂𝒂 + 𝛽𝛽 𝒃𝒃 − 𝒂𝒂 + 𝛾𝛾(𝒄𝒄 − 𝒂𝒂)

• Solving the equation for 𝑡𝑡,𝛽𝛽, 𝛾𝛾:
◦ 𝑥𝑥𝑒𝑒 + 𝑡𝑡𝑥𝑥𝑑𝑑 = 𝑥𝑥𝑎𝑎 + 𝛽𝛽 𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑎𝑎 + 𝑟𝑟(𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑎𝑎)
◦ 𝑦𝑦𝑒𝑒 + 𝑡𝑡𝑦𝑦𝑑𝑑 = 𝑦𝑦𝑎𝑎 + 𝛽𝛽 𝑦𝑦𝑏𝑏 − 𝑦𝑦𝑎𝑎 + 𝑟𝑟(𝑦𝑦𝑐𝑐 − 𝑦𝑦𝑎𝑎)
◦ 𝑧𝑧𝑒𝑒 + 𝑡𝑡𝑧𝑧𝑑𝑑 = 𝑧𝑧𝑎𝑎 + 𝛽𝛽 𝑧𝑧𝑏𝑏 − 𝑧𝑧𝑎𝑎 + 𝑟𝑟(𝑧𝑧𝑐𝑐 − 𝑧𝑧𝑎𝑎)

◦ Can be rewritten:

◦
𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑏𝑏 𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑐𝑐 𝑥𝑥𝑑𝑑
𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑏𝑏
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑏𝑏

𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑐𝑐
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑐𝑐

𝑦𝑦𝑑𝑑
𝑧𝑧𝑑𝑑

𝛽𝛽
𝛾𝛾
𝑡𝑡

=
𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑒𝑒
𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑒𝑒
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑒𝑒

𝒆𝒆

a

c

b

Intersection between Ray and Triangle

• Cramer’s rule can be utilized to solve the 3 x 3 linear system

◦
𝑎𝑎1 𝑏𝑏1 𝑐𝑐1
𝑎𝑎2
𝑎𝑎3

𝑏𝑏2
𝑏𝑏3

𝑐𝑐2
𝑐𝑐3

𝑥𝑥
𝑦𝑦
𝑧𝑧

=
𝑑𝑑1
𝑑𝑑2
𝑑𝑑3

◦ 𝑥𝑥 =

𝑑𝑑1 𝑏𝑏1 𝑐𝑐1
𝑑𝑑2
𝑑𝑑3

𝑏𝑏2
𝑏𝑏3

𝑐𝑐2
𝑐𝑐3

𝐴𝐴
, 𝑦𝑦 =

𝑎𝑎1 𝑑𝑑1 𝑐𝑐1
𝑎𝑎2
𝑎𝑎3

𝑑𝑑2
𝑑𝑑3

𝑐𝑐2
𝑐𝑐3

𝐴𝐴
, 𝑧𝑧 =

𝑎𝑎1 𝑏𝑏1 𝑑𝑑1
𝑎𝑎2
𝑎𝑎3

𝑏𝑏2
𝑏𝑏3

𝑑𝑑2
𝑑𝑑3

𝐴𝐴

◦ where 𝐴𝐴 =
𝑎𝑎1 𝑏𝑏1 𝑐𝑐1
𝑎𝑎2
𝑎𝑎3

𝑏𝑏2
𝑏𝑏3

𝑐𝑐2
𝑐𝑐3

, |.| is the determinant

◦ 𝐴𝐴 = 𝑎𝑎1
𝑏𝑏2 𝑐𝑐2
𝑏𝑏3 𝑐𝑐3

− 𝑏𝑏1
𝑎𝑎2 𝑐𝑐2
𝑎𝑎3 𝑐𝑐3 + 𝑐𝑐1

𝑎𝑎2 𝑏𝑏2
𝑎𝑎3 𝑏𝑏3

◦
𝑏𝑏2 𝑐𝑐2
𝑏𝑏3 𝑐𝑐3

= 𝑏𝑏2𝑐𝑐3 − 𝑐𝑐2𝑏𝑏3

𝒗𝒗𝟏𝟏

𝒗𝒗𝟐𝟐

|𝒗𝒗𝟏𝟏𝒗𝒗𝟐𝟐|

Intersection between Ray and Triangle

◦
𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑏𝑏 𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑐𝑐 𝑥𝑥𝑑𝑑
𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑏𝑏
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑏𝑏

𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑐𝑐
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑐𝑐

𝑦𝑦𝑑𝑑
𝑧𝑧𝑑𝑑

𝛽𝛽
𝛾𝛾
𝑡𝑡

=
𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑒𝑒
𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑒𝑒
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑒𝑒

◦ 𝛽𝛽 =

𝑥𝑥𝑎𝑎−𝑥𝑥𝑒𝑒 𝑥𝑥𝑎𝑎−𝑥𝑥𝑐𝑐 𝑥𝑥𝑑𝑑
𝑦𝑦𝑎𝑎−𝑦𝑦𝑒𝑒
𝑧𝑧𝑎𝑎−𝑧𝑧𝑒𝑒

𝑦𝑦𝑎𝑎−𝑦𝑦𝑐𝑐
𝑧𝑧𝑎𝑎−𝑧𝑧𝑐𝑐

𝑦𝑦𝑑𝑑
𝑧𝑧𝑑𝑑

|𝐴𝐴|

◦ 𝛾𝛾 =

𝑥𝑥𝑎𝑎−𝑥𝑥𝑏𝑏 𝑥𝑥𝑎𝑎−𝑥𝑥𝑒𝑒 𝑥𝑥𝑑𝑑
𝑦𝑦𝑎𝑎−𝑦𝑦𝑏𝑏
𝑧𝑧𝑎𝑎−𝑧𝑧𝑏𝑏

𝑦𝑦𝑎𝑎−𝑦𝑦𝑒𝑒
𝑧𝑧𝑎𝑎−𝑧𝑧𝑒𝑒

𝑦𝑦𝑑𝑑
𝑧𝑧𝑑𝑑

|𝐴𝐴|

◦ 𝑡𝑡 =

𝑥𝑥𝑎𝑎−𝑥𝑥𝑏𝑏 𝑥𝑥𝑎𝑎−𝑥𝑥𝑐𝑐 𝑥𝑥𝑎𝑎−𝑥𝑥𝑒𝑒
𝑦𝑦𝑎𝑎−𝑦𝑦𝑏𝑏
𝑧𝑧𝑎𝑎−𝑧𝑧𝑏𝑏

𝑦𝑦𝑎𝑎−𝑦𝑦𝑐𝑐
𝑧𝑧𝑎𝑎−𝑧𝑧𝑐𝑐

𝑦𝑦𝑎𝑎−𝑦𝑦𝑒𝑒
𝑧𝑧𝑎𝑎−𝑧𝑧𝑒𝑒

|𝐴𝐴|

◦ where 𝐴𝐴 =
𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑏𝑏 𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑐𝑐 𝑥𝑥𝑑𝑑
𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑏𝑏
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑏𝑏

𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑐𝑐
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑐𝑐

𝑦𝑦𝑑𝑑
𝑧𝑧𝑑𝑑

𝒆𝒆

a

c

b

Intersection between Ray and Triangle

• Procedure (with early termination) for finding the intersection:
◦ Input: a ray, vertex a, b, c, interval 𝑡𝑡0, 𝑡𝑡1

◦ Compute t
◦ If (𝑡𝑡 < 𝑡𝑡0) or (𝑡𝑡 > 𝑡𝑡1) then
◦ return false

◦ Compute 𝛾𝛾
◦ If (𝛾𝛾 < 0) or (𝛾𝛾 > 1) then
◦ return false

◦ Compute 𝛽𝛽
◦ If (𝛽𝛽 < 0) or (𝛽𝛽 > 1 − 𝛾𝛾) then
◦ return false

◦ return true

𝒆𝒆

a

c

b

Intersection between Ray and Objects

• Procedure for finding the closest intersection:

◦ hit = false
◦ For each object o do

◦ If (o is intersected with the ray at a parameter t and 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡1]) then
◦ hit = true
◦ store some information (e.g., o, normal, etc.) for shading
◦ 𝑡𝑡1 = 𝑡𝑡

◦ return hit

Basic Ray Tracer
• For each pixel do
◦ Compute a primary ray (viewing ray)
◦ Find the closest intersection point between the ray and a scene
◦ Determine a pixel color
◦ e.g., we can apply the Phong illumination model here

Basic Ray Tracer
• For each pixel do
◦ Compute a primary ray (viewing ray)
◦ If (ray intersects an object with 𝑡𝑡 ∈ 0,∞) then
◦ Compute a hit record that contains some information (normal, materials, …)
◦ Evaluate an illumination model and set a pixel color

◦ Else
◦ Set a pixel color to background color

Shadows
• Assume there are two intersection points, p and q
◦ p is in shadow, but q is not in shadow

• Rays to determine whether or not the point is in shadow are shadow rays
◦ Generate a shadow ray similar to the primary ray
◦ Check there is any hit between the origin and light
◦ 𝑡𝑡 = [𝑡𝑡0, 𝑡𝑡1]

◦ e.g., 𝑡𝑡 = [0, 𝑡𝑡1]

pq

Shadows
• Assume there are two intersection points, p and q
◦ p is in shadow, but q is not in shadow

• Rays to determine whether or not the point is in shadow are shadow rays
◦ Generate a shadow ray similar to the primary ray
◦ Check there is any hit between the origin and light
◦ 𝑡𝑡 = [𝑡𝑡0, 𝑡𝑡1]

◦ Due to numerical issues, the shadow ray can intersect the surface on which
the point lies
◦ A naïve but common approach is to add an offset
◦ 𝑡𝑡 = [𝜖𝜖, 𝑡𝑡1]

q

𝒒𝒒 + 𝝐𝝐𝝐𝝐

𝒍𝒍

Shadows
• Pseudocode to implement shadows (based on the Phong illumination)

• Input: a ray 𝒆𝒆 + 𝑡𝑡𝒅𝒅, 𝑡𝑡0 = 0, 𝑡𝑡1 = ∞

• If (there is a hit between the ray and objects) then
◦ 𝒑𝒑 = 𝒆𝒆 + 𝑡𝑡𝒅𝒅 // p is the closest intersection from e
◦ 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 = (𝟎𝟎,𝟎𝟎,𝟎𝟎)
◦ If (there is no hit between the shadow ray and a light) then
◦ 𝒄𝒄 = 𝒄𝒄 + 𝒌𝒌𝒂𝒂𝑳𝑳𝒂𝒂 + 𝑳𝑳𝒅𝒅𝒌𝒌𝒅𝒅 max 0,𝒏𝒏 � 𝒍𝒍 + 𝑳𝑳𝒔𝒔𝒌𝒌𝒔𝒔 max 0, 𝒓𝒓 � 𝒗𝒗 𝑠𝑠

◦ return c

• Else
◦ return background color

Some History of Ray Tracing
• Rene Descartes (1637) used ray tracing to explain the phenomena of rainbow

• In rendering, the ray casting was presented by Arthur Appel (1968)
◦ Ray casting (discussed so far) tends to be interchangeable to ray tracing

◦ Ray tracing generates additional rays (e.g., secondary rays) to simulate global
illumination effects

◦ Ray tracing becomes popular due to the Whitted’s paper (1980)
◦ T. Whitted. An improved illumination model for shading display. Communications of

the ACM, 23(6):343–349, 1980

Further Readings
• Chapter 4

	CT4201/EC4215: Computer Graphics���Ray Tracing
	Ray Tracing
	Rendering
	Ray Tracing
	Ray Tracing
	Basic Ray Tracer
	Basic Ray Tracer
	Basic Ray Tracer
	Basic Ray Tracer
	Primary Ray Generation
	Primary Ray Generation
	Orthographic Views
	Orthographic Views
	Perspective Views
	Intersection between Ray and Object
	Intersection between Ray and Sphere
	Intersection between Ray and Sphere
	Intersection between Ray and Triangle
	Intersection between Ray and Triangle
	Intersection between Ray and Triangle
	Intersection between Ray and Triangle
	Intersection between Ray and Objects
	Basic Ray Tracer
	Basic Ray Tracer
	Shadows
	Shadows
	Shadows
	Some History of Ray Tracing
	Further Readings

