CT4201/EC4215: Computer Graphics

Ray Tracing

BOCHANG MOON

Ray Tracing

- A rendering technique:
 - Produce a 2D image from a scene (models)
- Image-order rendering:
 - Loop over pixels to decide pixel colors
- Object-order rendering:
 - Iterate objects and compute some pixel colors related to each object

Rendering

eye

light

Ray Tracing

Ray Tracing

eye

3D objects

- Ray generation
 - Compute the origin and direction of a ray per pixel, by considering the camera and image plane

- Ray intersection
 - Find the closest intersection point between the ray and objects

- Shading
 - Compute the pixel color using the geometry, material, and lights at the intersection point

- For each pixel do
 - Compute a primary ray (viewing ray)
 - Find the closest intersection point between the ray and a scene
 - Determine a pixel color

Primary Ray Generation

- Mathematical representation for a ray
 - 3D parametric line: p(t) = e + t(s e)
- Properties
 - p(0) = e, p(1) = s
 - $p(t_1)$ is closer to the eye than $p(t_2)$ when $0 < t_1 < t_2$
 - When t < 0, p(t) is behind the eye
 - e is a given value
- Q. How can we compute s?

Primary Ray Generation

- Mathematical representation for a ray
 - 3D parametric line: p(t) = e + t(s e)

- u, v, w forms a right-handed coordinate system
- Two kinds of views
 - Orthographic view
 - Perspective view

Orthographic Views

- All primary rays have the same direction, -w
- The primary ray starts on the image plane defined by e, u, v
- The image plane is defined with four numbers:
 - I, r: positions of left and right edges of the image plane
 - b, t: positions of bottom and top edges
- To make an image with $n_x \times n_y$
 - Pixels are spaced as the following:
 - $\frac{r-l}{n_x}$ horizontally, $\frac{t-b}{n_y}$ vertically
- Position (α, β) in the image plane is corresponding to a pixel (i, j) in the raster image:
 - $\alpha = l + \frac{(r-l)(i+0.5)}{n_x}$
 - $\circ \quad \beta = b + \frac{(t-b)(j+0.5)}{n_{\nu}}$
 - (α, β) are the coordinates of the pixel's position on the image plane

Orthographic Views

- Procedure to generate orthographic viewing rays
 - Compute α and β

$$\circ \quad \alpha = l + \frac{(r-l)(i+0.5)}{n_x}$$

$$\circ \ \beta = b + \frac{(t-b)(j+0.5)}{n_y}$$

- ray.direction := -w
- $ray.origin := e + \alpha u + \beta v$
- Properties
 - Same direction for all rays
 - Different origins for rays

Perspective Views

- All rays have the same origin, **e**, but have different directions
- The image plane is placed with a distance, d, in front of e
 - d: image plane distance (called the focal length)
- Procedure to generate perspective viewing rays
 - Compute α and β

$$\circ \quad \alpha = l + \frac{(r-l)(i+0.5)}{n_x}$$

$$\circ \quad \beta = b + \frac{(t-b)(j+0.5)}{n_y}$$

• $ray.direction := -dw + \alpha u + \beta v$

• ray.origin = e

Intersection between Ray and Object

- Generated ray: $\mathbf{p}(t) = \mathbf{e} + t\mathbf{d}$
- The next task is to find the closest intersection point between a ray and objects
 - i.e., need to find a t in the interval $[t_0, t_1]$ (e.g., $[0, +\infty]$)
- Objects
 - Sphere
 - Triangle
 - Multiple objects

Intersection between Ray and Sphere

- Ray: p(t) = e + td
- Implicit surface: $f(\mathbf{p}) = 0$
- Intersection points should satisfy both equations
 - $f(\boldsymbol{p}(t)) = f(\boldsymbol{e} + t\boldsymbol{d}) = 0$
- Let's define a sphere with center $c = (x_c, y_c, z_c)$ and radius r

•
$$(x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2 - r^2 = 0$$

- $(\boldsymbol{p} \boldsymbol{c}) \cdot (\boldsymbol{p} \boldsymbol{c}) r^2 = 0$ (vector form)
- A point p that satisfies this equation is on the sphere
- By plug-in the parametric ray equation,

•
$$(\mathbf{e} + t\mathbf{d} - \mathbf{c}) \cdot (\mathbf{e} + t\mathbf{d} - \mathbf{c}) - r^2 = 0$$

- By rearranging terms with respect to *t* (unknown value):
- $(d \cdot d)t^2 + 2d \cdot (e c)t + (e c) \cdot (e c) r^2 = 0$

Intersection between Ray and Sphere

- A quadratic equation in t
 - $(d \cdot d)t^2 + 2d \cdot (e c)t + (e c) \cdot (e c) r^2 = 0$
- The solutions for $at^2 + bt + c = 0$

- $b^2 4ac$ (called discriminant)
 - When $b^2 4ac < 0$, there is no solution (the ray does not intersect with the sphere)
 - When $b^2 4ac = 0$, a solution exists (the ray touches the sphere)
 - When $b^2 4ac > 0$, two solutions exist (the ray enters and leaves the sphere)

•
$$t = \frac{-d \cdot (e-c) \pm \sqrt{\left(d \cdot (e-c)\right)^2 - \left(d \cdot d\right)\left((e-c) \cdot (e-c) - r^2\right)}}{(d \cdot d)}$$

- Ray: $\mathbf{p}(t) = \mathbf{e} + t\mathbf{d}$
- Intersection point:

•
$$e + td = a + \beta(b - a) + \gamma(c - a)$$

• Solving the equation for t, β, γ :

$$x_e + tx_d = x_a + \beta(x_b - x_a) + r(x_c - x_a)$$

•
$$y_e + ty_d = y_a + \beta(y_b - y_a) + r(y_c - y_a)$$

•
$$z_e + tz_d = z_a + \beta(z_b - z_a) + r(z_c - z_a)$$

• Can be rewritten:

$$\begin{bmatrix}
x_a - x_b & x_a - x_c & x_d \\
y_a - y_b & y_a - y_c & y_d \\
z_a - z_b & z_a - z_c & z_d
\end{bmatrix}
\begin{bmatrix}
\beta \\
\gamma \\
t
\end{bmatrix} = \begin{bmatrix}
x_a - x_e \\
y_a - y_e \\
z_a - z_e
\end{bmatrix}$$

Cramer's rule can be utilized to solve the 3 x 3 linear system

$$\begin{bmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix}
d_1 \\
d_2 \\
d_3
\end{bmatrix}$$

• where
$$|A|=\begin{vmatrix}a_1&b_1&c_1\\a_2&b_2&c_2\\a_3&b_3&c_3\end{vmatrix}$$
, |.| is the determinant

$$|A| = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

$$\begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} = b_2 c_3 - c_2 b_3$$

$$\begin{bmatrix} x_a - x_b & x_a - x_c & x_d \\ y_a - y_b & y_a - y_c & y_d \\ z_a - z_b & z_a - z_c & z_d \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ t \end{bmatrix} = \begin{bmatrix} x_a - x_e \\ y_a - y_e \\ z_a - z_e \end{bmatrix}$$

• where
$$|A| = \begin{vmatrix} x_a - x_b & x_a - x_c & x_d \\ y_a - y_b & y_a - y_c & y_d \\ z_a - z_b & z_a - z_c & z_d \end{vmatrix}$$

- Procedure (with early termination) for finding the intersection:
 - Input: a ray, vertex a, b, c, interval $[t_0, t_1]$
 - Compute t
 - If $(t < t_0)$ or $(t > t_1)$ then
 - return false
 - Compute γ
 - If $(\gamma < 0)$ or $(\gamma > 1)$ then
 - return false
 - Compute β
 - If $(\beta < 0)$ or $(\beta > 1 \gamma)$ then
 - return false
 - return true

Intersection between Ray and Objects

- Procedure for finding the *closest* intersection:
 - hit = false
 - For each object o do
 - If (o is intersected with the ray at a parameter t and $t \in [t_0, t_1]$) then
 - hit = true
 - store some information (e.g., o, normal, etc.) for shading
 - \cdot $t_1 = t$
 - return hit

- For each pixel do
 - Compute a primary ray (viewing ray)
 - Find the closest intersection point between the ray and a scene
 - Determine a pixel color
 - e.g., we can apply the Phong illumination model here

- For each pixel do
 - Compute a primary ray (viewing ray)
 - If (ray intersects an object with $t \in [0, \infty)$) then
 - Compute a hit record that contains some information (normal, materials, ...)
 - Evaluate an illumination model and set a pixel color
 - Else
 - Set a pixel color to background color

Shadows

- Assume there are two intersection points, p and q
 - p is in shadow, but q is not in shadow
- Rays to determine whether or not the point is in shadow are shadow rays

$$t = [t_0, t_1]$$

Shadows

- Assume there are two intersection points, p and q
 - p is in shadow, but q is not in shadow
- Rays to determine whether or not the point is in shadow are shadow rays
 - Generate a shadow ray similar to the primary ray
 - Check there is any hit between the origin and light
 - $\cdot t = [t_0, t_1]$
 - Due to numerical issues, the shadow ray can intersect the surface on which the point lies
 - A naïve but common approach is to add an offset
 - $\cdot t = [\epsilon, t_1]$

 $q + \epsilon l$

Shadows

- Pseudocode to implement shadows (based on the Phong illumination)
- Input: a ray e + td, $[t_0 = 0, t_1 = \infty]$
- If (there is a hit between the ray and objects) then
 - p = e + td // p is the closest intersection from e
 - color c = (0, 0, 0)
 - If (there is no hit between the shadow ray and a light) then
 - $c = c + k_a L_a + L_d k_d \max(0, n \cdot l) + L_s k_s \max(0, r \cdot v)^s$
 - return c
- Else
 - return background color

Some History of Ray Tracing

- Rene Descartes (1637) used ray tracing to explain the phenomena of rainbow
- In rendering, the ray casting was presented by Arthur Appel (1968)
 - Ray casting (discussed so far) tends to be interchangeable to ray tracing
 - Ray tracing generates additional rays (e.g., secondary rays) to simulate global illumination effects
 - Ray tracing becomes popular due to the Whitted's paper (1980)
 - T. Whitted. An improved illumination model for shading display. Communications of the ACM, 23(6):343–349, 1980

Further Readings

Chapter 4