CT4201/EC4215: Computer Graphics

Culling

BOCHANG MOON

Culling

- An optimization process that removes invisible geometry to speed up rendering
- Three types of culling
 - View volume culling
 - Occlusion culling
 - Back-face culling

- A process to remove geometry that is outside the view volume
- Q. why do we need to do this culling?
- Q. how do we efficiently identify the object that is totally outside of the volume?

- A process to remove geometry that is outside the view volume
- Q. why do we need to do this culling?

- A process to remove geometry that is outside the view volume
- Q. how do we efficiently identify the object that is totally outside of the volume?
 - A bounding volume can be utilized. Why?

- Simple bounding volumes
 - Bounding box
 - e.g., axis-aligned bounding box (AABB)
 - Bounding sphere

Need identify the three cases

Background: Implicit Functions

• 2D implicit curves

- 3D implicit surfaces
 - $^{\circ} f(x,y,z) = 0$

Background: Implicit Functions

- Infinite plane through point a with surface normal n
 - $(p-a)\cdot n=0$
 - The surface normal **n** is a vector perpendicular to the plane.
 - When a point p is on the plane, $(p-a) \cdot n$ will be zero.
 - Recall the definition of a dot product
 - $a \cdot b = ||a|||b|| \cos\theta$

- We can check the following:
 - $\circ \frac{(c-a)\cdot n}{\|n\|} > r$
 - **c**: center of the bounding sphere
 - r: radius of the sphere
 - Q. what's the geometric meaning of $\frac{(c-a)\cdot n}{\|n\|}$?

Background: Dot Product

- Vector multiplications
 - Dot product (scalar product)
 - $a \cdot b = ||a|| ||b|| \cos\theta$
 - Usage: $(a \rightarrow b)$ projection of a vector to another one
 - $a \rightarrow b = \| \boldsymbol{a} \| \cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\| \boldsymbol{b} \|}$
 - Note: this is the length of the projected vector onto **b**

- Dot product in Cartesian coordinates
 - Properties: $x \cdot x = y \cdot y = 1$ and $x \cdot y = 0$
 - $\bullet \quad \boldsymbol{a} \cdot \boldsymbol{b} = (x_a \boldsymbol{x} + y_a \boldsymbol{y}) \cdot (x_b \boldsymbol{x} + y_b \boldsymbol{y})$
 - $= x_a x_b(\mathbf{x} \cdot \mathbf{x}) + x_a y_b(\mathbf{x} \cdot \mathbf{y}) + x_b y_a(\mathbf{y} \cdot \mathbf{x}) + y_a y_b(\mathbf{y} \cdot \mathbf{y})$
 - $= x_a x_b + y_a y_b$
 - In 3D,
 - $\bullet \quad \boldsymbol{a} \cdot \boldsymbol{b} = x_a x_b + y_a y_b + z_a z_b$

Need identify the three cases

inside

$$\frac{(c-a)\cdot n}{\parallel n\parallel} < -r$$

intermediate

$$-r < \frac{(c-a) \cdot n}{\parallel n \parallel} < r$$

$$\frac{(c-a) \cdot n}{\parallel n \parallel} > r$$

outside

$$\frac{(c-a)\cdot n}{\parallel n\parallel} > \tau$$

• Q. can we optimize our pipeline further?

intermediate

$$-r < \frac{(c-a) \cdot n}{\parallel n \parallel} < r$$

Hierarchical Culling

If a bounding volume is intermediate,

Check its left and right children

Back-Face Culling

- If the angle between the view and normal is within a range (-90 to 90 degrees), the triangle is visible.
 - $\circ \cos\theta \ge 0$

Back-Face Culling

- If the angle between the view and normal is within a range (-90 to 90 degrees), the triangle is visible.
 - \circ cos $\theta \ge 0$

Dot product

• $a \cdot b = ||a|||b|| \cos\theta$

Back-Face Culling

- Assumption for the back-face culling:
 - Models are closed (i.e., no holes).

Further Readings

- Chapter 2.5
- Chapter 8.4 and 12