
CT4510: Computer Graphics

Texture Mapping
BOCHANG MOON

Texture Mapping
• Simulate spatially varying surface properties
◦ Phong illumination model is coupled with a material (e.g., color)
◦ Add small polygons with different materials

◦ Very expensive

Texture Mapping
• Simulate spatially varying surface properties
◦ Geometry of a surface dose not change, but materials need to be changed
◦ Add an image onto the surface
◦ Need to define a mapping function from the image to the surface

Texture Mapping
• Texture lookup
◦ Color lookup(Image T, float u, float v) {

◦ (x, y) = map_function(u, v)
◦ return T(x,y)

◦ }

• Note:
◦ Each vertex has a texture coordinate (u, v)
◦ A point inside a polygon has an interpolated

coordinate

Texture Mapping
• Texture lookup
◦ Color lookup(Image T, float u, float v) {

◦ (x, y) = map_function(u, v)
◦ return T(x,y)

◦ }

• Note:
◦ Each vertex has a texture coordinate (u, v)
◦ A point inside a polygon has an interpolated

coordinate

Texture Mapping in OpenGL
• Assign a texture coordinate, (u, v), to each vertex

Texture Mapping in OpenGL
• General procedure for creating a texture map:

◦ texImg = Read an image file (jpg, bmp, png, exr, …)
◦ Gluint textureID[1];
◦ glGenTextures(1, &textureID[0]);// create n texture name(ID) (e.g., n = 1)
◦ glBindTexture(GL_TEXTURE_2D, textureID[0]); // bind a texture to the target (e.g., GL_TEXTURE_2D)
◦ glTexImage2D(GL_TEXTURE_2D, 0, 3, width of texImg, height of texImg, 0, GL_RGB, GL_UNSIGNED_BYTE, data

of texImg);
◦ // 0: level-of-detail

◦ // 3: number of color components

Texture Mapping in OpenGL
• General procedure of using the generated map:

◦ glBindTexture(GL_TEXTURE_2D, textureID[0]);
◦ glBegin(GL_QUADS);
◦ // Front Face
◦ glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
◦ glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);
◦ glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f);
◦ glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
◦ …

◦ glEnd();

Texture Mapping
• Assign texture coordinates (normalized coordinates) at each vertex

◦ (u, v) in the range ([0…1], [0…1])

• Texture pixel (texel) is fetched given a (u, v) coordinate
◦ e.g., u, v → 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡 in the range 0 …𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 , [0 … ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡]
◦ As a result, 𝑥𝑥,𝑦𝑦 → 𝑢𝑢,𝑣𝑣 → (𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡)

Image space Texture space

Texture Mapping
• Assign texture coordinates (normalized coordinates) at each vertex

◦ (u, v) in the range ([0…1], [0…1])

• Texture pixel (texel) is fetched given a (u, v) coordinate
◦ e.g., u, v → 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡 in the range 0 …𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 , [0 … ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡]
◦ As a result, 𝑥𝑥,𝑦𝑦 → 𝑢𝑢,𝑣𝑣 → (𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡)

𝑦𝑦

𝑥𝑥

𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡

𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡

Issues of Texture Mapping

𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡

𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡

𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡

𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡oversampling undersampling

◦ Oversampling (magnification): one pixel is corresponding to less than a texel
◦ Undersampling (minification): one pixel is corresponding to more than a texel

Texture Filtering for Oversampling
• Filtering methods
◦ Nearest neighbor: take the color of the closest texel
◦ Bilinear interpolation:
◦ 𝛼𝛼 = 𝑡𝑡𝑝𝑝−𝑡𝑡𝑙𝑙

𝑡𝑡ℎ−𝑡𝑡𝑙𝑙

◦ 𝛽𝛽 = 𝑦𝑦𝑝𝑝−𝑦𝑦𝑙𝑙
𝑦𝑦ℎ−𝑦𝑦𝑙𝑙

◦ 𝑐𝑐𝑝𝑝 = 1 − 𝛽𝛽 1 − 𝛼𝛼 𝑐𝑐0 + 𝛼𝛼𝑐𝑐1 + 𝛽𝛽 1 − 𝛼𝛼 𝑐𝑐2 + 𝛼𝛼𝑐𝑐3

(𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙)

(𝑥𝑥ℎ, 𝑦𝑦ℎ)

𝑐𝑐0 𝑐𝑐1

𝑐𝑐2 𝑐𝑐3

(𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝)

Texture Filtering for Oversampling
• Filtering methods
◦ Nearest neighbor: take the color of the closest texel
◦ Bilinear interpolation:

Texture Filtering for Undersampling
• High-frequency details in a small region introduce an image artifact (e.g.,

aliasing)
◦ Should integrate multiple texels on the fly

◦ Requires multiple read operations (expensive)

Texture Filtering for Undersampling
• High-frequency details in a small region introduce an image artifact (e.g.,

aliasing)
◦ Should integrate multiple texels on the fly

◦ Requires multiple read operations (expensive)

◦ MIP Mapping: Prepare multiple-resolution (pre-filtered) images in preprocessing and
select a texel from a MIP level

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ × ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
2 ×

ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤
2

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
4 ×

ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤
4

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
8 ×

ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤
8

Texture Filtering for Undersampling
• High-frequency details in a small region introduce an image artifact (e.g.,

aliasing)
◦ Should integrate multiple texels on the fly

◦ Requires multiple read operations (expensive)

◦ MIP Mapping: Prepare multiple-resolution (pre-filtered) images in preprocessing and
select a texel from a MIP level
◦ Two adjacent MIP levels can be interpolated

Texture Filtering in OpenGL
• MIP map generation
◦ gluBuild2DMipmaps(GL_TEXTURE_2D, 3, width, height, GL_RGB, GL_UNSIGNED_BYTE,

image data);

• Filtering methods
◦ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, filter);
◦ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, filter);

• Filters for magnification
◦ GL_NEAREST, GL_LINEAR

• Filters for minification
◦ GL_NEAREST, GL_LINEAR, GL_NEAREST_MIPMAP_NEAREST, GL_LINEAR_MIPMAP_NEAREST,

GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_LINEAR
◦ Note: GL_XX_MIPMAP_LINEAR // choose the two MIP maps that closely match the size of

pixels for an interpolation
◦ Note: GL_LINEAR_MIPMAP_NEAREST // use the GL_LINEAR interpolation within a MIP level

Applications: Material Parameters
• Phong illuming model
◦ 𝐼𝐼 = ∑𝑖𝑖=1

𝑜𝑜𝑜𝑜 𝑙𝑙𝑖𝑖𝑙𝑙ℎ𝑡𝑡𝑙𝑙 𝐿𝐿𝑎𝑎𝑖𝑖 𝑘𝑘𝑎𝑎 + 𝐿𝐿𝑑𝑑𝑖𝑖 𝑘𝑘𝑑𝑑 max 0,𝒏𝒏 � 𝒍𝒍𝒊𝒊 + 𝐿𝐿𝑙𝑙𝑖𝑖 𝑘𝑘𝑙𝑙 max 0, 𝒓𝒓𝒊𝒊 � 𝒗𝒗 𝑙𝑙

• Q. Which parameters can be changed from the texture mapping?
◦ 𝑘𝑘𝑎𝑎 ,𝑘𝑘𝑑𝑑, 𝑘𝑘𝑙𝑙

• Lights can be textured as well
◦ e.g., TV screen or your monitor (area lights)

Applications: Shadow Maps
• Shadow mapping
◦ 1. Pre-render a scene from a light source and store depths in a shadow map
◦ 2. Render a scene from a view point while performing an extra test

◦ If (distance between the point (i.e., fragment) and a light > the stored depth)
◦ This point is in shadow.

Applications: Shadow Maps
• Issues with shadow mapping
◦ Area lights
◦ Multiple lights
◦ …

Applications: Environment Maps
• Environment mapping (reflection mapping) is an image-based lighting that

approximates reflections (e.g., indirect illumination) on surfaces, by using pre-
computed textures

◦ Simple geometries (e.g., sphere, cube) are usually used to approximate the
environment
◦ The geometries are intermediate objects for texture mapping

Image from en.wikipedia

p

n

r

Applications: Environment Maps
• Environment mapping (reflection mapping) is an image-based lighting that

approximates reflections (e.g., indirect illumination) on surfaces, by using pre-
computed textures

◦ Simple geometries (e.g., sphere, cube) are usually used to approximate the
environment
◦ The geometries are intermediate objects for texture mapping

p

n

r

Applications: Bump Maps

• Approaches to model rough (bumpy) surfaces
◦ Add complex geometries
◦ Perturb surface normal based on a texture image

Diffuse texture map Bump mapRendering result

Applications: Other Maps

• Normal mapping
◦ Replace the normal at a point with a pre-computed normal (r, g, b) at texel

• Opacity maps
◦ Use black and white (or alpha channels) to make some areas of a surface transparent

Further Readings
• Chapter 11

	CT4510: Computer Graphics���Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping in OpenGL
	Texture Mapping in OpenGL
	Texture Mapping in OpenGL
	Texture Mapping
	Texture Mapping
	Issues of Texture Mapping
	Texture Filtering for Oversampling
	Texture Filtering for Oversampling
	Texture Filtering for Undersampling
	Texture Filtering for Undersampling
	Texture Filtering for Undersampling
	Texture Filtering in OpenGL
	Applications: Material Parameters
	Applications: Shadow Maps
	Applications: Shadow Maps
	Applications: Environment Maps
	Applications: Environment Maps
	Applications: Bump Maps
	Applications: Other Maps
	Further Readings

