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Texture Mapping
• Simulate spatially varying surface properties
◦ Phong illumination model is coupled with a material (e.g., color)
◦ Add small polygons with different materials 

◦ Very expensive



Texture Mapping
• Simulate spatially varying surface properties
◦ Geometry of a surface dose not change, but materials need to be changed
◦ Add an image onto the surface
◦ Need to define a mapping function from the image to the surface 



Texture Mapping
• Texture lookup 
◦ Color lookup(Image T, float u, float v) {

◦ (x, y) = map_function(u, v)
◦ return T(x,y)

◦ }

• Note:
◦ Each vertex has a texture coordinate (u, v)
◦ A point inside a polygon has an interpolated 

coordinate
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Texture Mapping in OpenGL
• Assign a texture coordinate, (u, v), to each vertex



Texture Mapping in OpenGL
• General procedure for creating a texture map:

◦ texImg = Read an image file (jpg, bmp, png, exr, …)
◦ Gluint textureID[1];
◦ glGenTextures(1, &textureID[0]);// create n texture name(ID) (e.g., n = 1)
◦ glBindTexture(GL_TEXTURE_2D, textureID[0]); // bind a texture to the target (e.g., GL_TEXTURE_2D)
◦ glTexImage2D(GL_TEXTURE_2D, 0, 3, width of texImg, height of texImg, 0, GL_RGB, GL_UNSIGNED_BYTE, data 

of texImg);
◦ // 0: level-of-detail

◦ // 3: number of color components



Texture Mapping in OpenGL
• General procedure of using the generated map:

◦ glBindTexture(GL_TEXTURE_2D, textureID[0]);
◦ glBegin(GL_QUADS);
◦ // Front Face
◦ glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f,  1.0f);
◦ glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f, -1.0f,  1.0f);
◦ glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f,  1.0f,  1.0f);
◦ glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f,  1.0f,  1.0f);
◦ …

◦ glEnd();



Texture Mapping
• Assign texture coordinates (normalized coordinates) at each vertex

◦ (u, v) in the range ([0…1], [0…1])

• Texture pixel (texel) is fetched given a (u, v) coordinate
◦ e.g., u, v → 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡 in the range 0 …𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 , [0 … ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡]
◦ As a result, 𝑥𝑥,𝑦𝑦 → 𝑢𝑢,𝑣𝑣 → (𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡)

Image space Texture space
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Issues of Texture Mapping

𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡

𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡

𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡

𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡oversampling undersampling

◦ Oversampling (magnification): one pixel is corresponding to less than a texel
◦ Undersampling (minification): one pixel is corresponding to more than a texel



Texture Filtering for Oversampling
• Filtering methods
◦ Nearest neighbor: take the color of the closest texel
◦ Bilinear interpolation:
◦ 𝛼𝛼 = 𝑡𝑡𝑝𝑝−𝑡𝑡𝑙𝑙

𝑡𝑡ℎ−𝑡𝑡𝑙𝑙

◦ 𝛽𝛽 = 𝑦𝑦𝑝𝑝−𝑦𝑦𝑙𝑙
𝑦𝑦ℎ−𝑦𝑦𝑙𝑙

◦ 𝑐𝑐𝑝𝑝 = 1 − 𝛽𝛽 1 − 𝛼𝛼 𝑐𝑐0 + 𝛼𝛼𝑐𝑐1 + 𝛽𝛽 1 − 𝛼𝛼 𝑐𝑐2 + 𝛼𝛼𝑐𝑐3

(𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙)

(𝑥𝑥ℎ, 𝑦𝑦ℎ)

𝑐𝑐0 𝑐𝑐1

𝑐𝑐2 𝑐𝑐3

(𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝)



Texture Filtering for Oversampling
• Filtering methods
◦ Nearest neighbor: take the color of the closest texel
◦ Bilinear interpolation: 



Texture Filtering for Undersampling
• High-frequency details in a small region introduce an image artifact (e.g., 

aliasing) 
◦ Should integrate multiple texels on the fly 

◦ Requires multiple read operations (expensive)
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• High-frequency details in a small region introduce an image artifact (e.g., 

aliasing) 
◦ Should integrate multiple texels on the fly 

◦ Requires multiple read operations (expensive)

◦ MIP Mapping: Prepare multiple-resolution (pre-filtered) images in preprocessing and 
select a texel from a MIP level

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ × ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
2 ×

ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤
2

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
4 ×

ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤
4

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
8 ×

ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤
8



Texture Filtering for Undersampling
• High-frequency details in a small region introduce an image artifact (e.g., 

aliasing) 
◦ Should integrate multiple texels on the fly 

◦ Requires multiple read operations (expensive)

◦ MIP Mapping: Prepare multiple-resolution (pre-filtered) images in preprocessing and 
select a texel from a MIP level
◦ Two adjacent MIP levels can be interpolated 



Texture Filtering in OpenGL
• MIP map generation
◦ gluBuild2DMipmaps(GL_TEXTURE_2D, 3, width, height, GL_RGB, GL_UNSIGNED_BYTE, 

image data);

• Filtering methods
◦ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, filter);
◦ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, filter);

• Filters for magnification
◦ GL_NEAREST, GL_LINEAR

• Filters for minification
◦ GL_NEAREST, GL_LINEAR, GL_NEAREST_MIPMAP_NEAREST, GL_LINEAR_MIPMAP_NEAREST, 

GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_LINEAR
◦ Note: GL_XX_MIPMAP_LINEAR // choose the two MIP maps that closely match the size of 

pixels for an interpolation
◦ Note: GL_LINEAR_MIPMAP_NEAREST // use the GL_LINEAR interpolation within a MIP level



Applications: Material Parameters
• Phong illuming model
◦ 𝐼𝐼 = ∑𝑖𝑖=1

# 𝑜𝑜𝑜𝑜 𝑙𝑙𝑖𝑖𝑙𝑙ℎ𝑡𝑡𝑙𝑙 𝐿𝐿𝑎𝑎𝑖𝑖 𝑘𝑘𝑎𝑎 + 𝐿𝐿𝑑𝑑𝑖𝑖 𝑘𝑘𝑑𝑑 max 0,𝒏𝒏 � 𝒍𝒍𝒊𝒊 + 𝐿𝐿𝑙𝑙𝑖𝑖 𝑘𝑘𝑙𝑙 max 0, 𝒓𝒓𝒊𝒊 � 𝒗𝒗 𝑙𝑙

• Q. Which parameters can be changed from the texture mapping?
◦ 𝑘𝑘𝑎𝑎 ,𝑘𝑘𝑑𝑑, 𝑘𝑘𝑙𝑙

• Lights can be textured as well
◦ e.g., TV screen or your monitor (area lights)



Applications: Shadow Maps
• Shadow mapping
◦ 1. Pre-render a scene from a light source and store depths in a shadow map
◦ 2. Render a scene from a view point while performing an extra test

◦ If (distance between the point (i.e., fragment) and a light > the stored depth)
◦ This point is in shadow.



Applications: Shadow Maps
• Issues with shadow mapping
◦ Area lights
◦ Multiple lights
◦ …



Applications: Environment Maps
• Environment mapping (reflection mapping) is an image-based lighting that 

approximates reflections (e.g., indirect illumination) on surfaces, by using pre-
computed textures

◦ Simple geometries (e.g., sphere, cube) are usually used to approximate the 
environment
◦ The geometries are intermediate objects for texture mapping

Image from en.wikipedia
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◦ Simple geometries (e.g., sphere, cube) are usually used to approximate the 
environment
◦ The geometries are intermediate objects for texture mapping

p

n

r



Applications: Bump Maps

• Approaches to model rough (bumpy) surfaces 
◦ Add complex geometries 
◦ Perturb surface normal based on a texture image 

Diffuse texture map Bump mapRendering result



Applications: Other Maps

• Normal mapping
◦ Replace the normal at a point with a pre-computed normal (r, g, b) at texel

• Opacity maps
◦ Use black and white (or alpha channels) to make some areas of a surface transparent



Further Readings
• Chapter 11
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