CT5510: Computer Graphics

Acceleration Data Structures

BOCHANG MOON

Ray Tracing

* Procedure for Ray Tracing:

* For each pixel
o Generate a primary ray (with depth 0)
o While (depth < d) {
> Find the closest intersection point between the ray
o If (there is a hit) then
° Generate a shadow ray
o If (there is no hit between the shadow ray and a light) then

o Perform a shading

> Generate a secondary ray (reflection or refraction ray) // increase the ray depth +1
° Go to the step 2

° Else
o Perform a shading with background color }
o Return background color

Naive Ray Tracing

* Problem: find the closest intersection point between the ray p(t) = e + td

* For each triangle

o Compute the intersection point (i.e., t) between a ray and triangle
o |If (there is a hit and t < stored t)

o Store shading information and the ray parametert
o Return the shading information

* The complexity of this naive algorithm is O(N), where N is the number of
triangles in the scene

Spatial Data Structures

* Group objects together into a hierarchy to accelerate the geometry
processing

* The complexity using the acceleration data structures can be a sub-linear time
(e.g., O(logN))

Object partitioning:
> Bounding Volume Hierarchy (BVH)

* Space partitioning:
o Uniform Grids
o Octree (3D) or QuadTree (2D)
° Binary space partition tree (BSP)
o kD-Trees

Bounding Boxes

* The key operation is to perform an Bounding box
intersection test between a ray and
bounding box v 1 v
> Need to know only whether a ray hits the box or A AA
not
Ray

 Ray:p(t) =e+td

e 2D version

° (x,y) € [Xmins Xmax] X [:Vmin» ymax]

Bounding Boxes

t
* Ray:p(t) =e+td il
2D version
o (x, Y) € [xmin: xmax] X [Ymin: ymax]
@
txmin
¢ - _ Xmin~"Xe
xmin — »
d t
: Lymax
o t _ Xmax—Xe 6
xmax — x
d
Ymin—Ye i
t L= — ymin
ymin "y °
¢ — Ymax—Ye
ymax V4

Bounding Boxes

 Ray:p(t) =e+td

ot . = Xmin—Xe { — Xmax~"Xe

xmmn X 7 xmax

d Xd

S Ymin—Ye £ _ Ymax—JYe

ymin — yq | ymax - Va
e t E _txmin’ txmax_’ .
e t E _tymln, tymax_ . ‘
* U € |lymin temax] N [tymin: tymax]

* Aray hits the box if and only if the two
intervals overlap.

Bounding Boxes

* Procedure for testing the intersection
o Compute tymin, txmaxs tymins Lymax

° If (Cxmin > tymax 07 tymax < tymin)
> No hit

> else
o Hit

Bounding Boxes

* Negative x; or y4:
o A ray will hit x,,45 (07 Ymax) before it hits x,,,;,, (07 Vinin)

(o]

If (xg = 0) then

° tmin = (Cmin — Xe)/Xq
° tmax = (Xmax — Xe)/Xa
else

° tmin = Xmax — Xe)/Xa

° tmax = (xmin - xe)/xd

(o]

(o]

If (y4 = 0) then

° tmin = Wmin — Ye)/Ya
° tmax = Vmax — Ye)/Ya
else

° tmin = (ymax - ye)/Yd
° tnax = (ymin - ye)/yd

(o]

Bounding Boxes

° Zeroxgoryg:
> Divide-by-zero issue

¢ Given a number a € R*, IEEE floating point rules provide the following:
+a

0 —_——

+0

—-a
0 — — —00

+0
° [txmin txmax] = | —00, —], [0, 00]: no hit
: [txmin,txmax] = [—o0, 0]: hit

The precious code works for +0 denominator

(¢]

* How about -0 denominator?
o We can test a reciprocal of the ray direction (e.g., 1/xy4)

Bounding Boxes

-0 denominator?
> If (xqg = 0) then
° tmin = (Cmin — Xe)/Xq
° tmax = (Xmax — Xe)/Xa
° else
° tmin = (Xmax — Xe)/Xa

° tmax = (xmin - xe)/xd

Problem: the first if statements will be true because —0 == 0 is true (IEEE floating
point standard), so we can miss valid hits.

o A remedy is test a reciprocal of the ray direction (e.g., 1/x4) instead of x4
o More detail:

o An Efficient and Robust Ray—Box Intersection Algorithm, Williams et al. 2005

Hierarchical Bounding Boxes

* Motivation: expensive all primitives within a bounding box that a ray hits

* Solution: the bounding boxes can be built in a hierarchical way

* Two popular hierarchical methods:
> Bounding volume hierarchy (BVH)
o Kd-tree
Bounding box

Ray

Bounding Volume Hierarchy

* Step 1. Compute a bounding box of primitives
> e.g., Axis-Aligned Bounding Box (AABB) [X;min> Ymin Zminl X [Xmax» Ymasxr Zmasx)

* Step 2. Split the primitives into two groups and compute the child BVs

* Step 3. Go to Step 1 until the number of primitives < k

V A
\ 4

Bounding Volume Hierarchy

* Step 1. Compute a bounding box of primitives
> e.g., Axis-Aligned Bounding Box (AABB) [X;min> Ymin Zminl X [Xmax» Ymasxr Zmasx)

* Step 2. Split the primitives into two groups and compute the child BVs

* Step 3. Go to Step 1 until the number of primitives < k

A VgV A
"y AV 'y

Bounding Volume Hierarchy

* Step 1. Compute a bounding box of primitives
> e.g., Axis-Aligned Bounding Box (AABB) [X;min Ymin Zmind X [Xmaxr Vmase Zmax]

* Step 2. Split the primitives into two groups and compute the child BVs

* Step 3. Go to Step 1 until the number of primitives < k

Bounding Volume Hierarchy

* Where should we split the primitives?
° Midpoint of a volume

o Sort the primitives, and select the median

o Other approaches?
o Surface Area Heuristic (SAH)

Bounding Volume Hierarchy

* Traversal procedure:

o Check whether the intersection occurs
o If (hit and t < ray.t) then
o If (the BV is a leaf node)

> Find the closest intersection point between the
ray and triangle

o If (the ray hits triangles) then
> ray.t =t (from the closest intersection)
> Store some shading info.
° else
> Check an intersection using its child BVs

* Properties of BVH
o Split primitives
° Some nodes can overlap each other

Bounding Volume Hierarchy

* Properties of BVH
o Object partitioning: split primitives
> Some BVs can overlap each other

Kd-trees

* Recursively split space with axis-aligned planes

VvV A

%

\ 4

Kd-trees

* Recursively split space with axis-aligned planes

%

v

A

\ 4

I

Kd-trees

* Recursively split space with axis-aligned planes

%

v

A

\ 4

Kd-trees

Recursively split space with axis-aligned planes
> Some nodes can point same triangles if we cannot

split them

v

A

\ 4

—/

v

Kd-trees

 Traversal N1
o Front-to-back traversal: traverse child nodes in
order along a ray
o Can terminate traversal as soon as an intersection \
between a ray and triangle is found N2 N3

Y g

Current node: N1

Stack:

Kd-trees

 Traversal N1
o Front-to-back traversal: traverse child nodes in
order along a ray
o Can terminate traversal as soon as an intersection \
between a ray and triangle is found N2 N3

Y g

Current node: N2

Stack: N3

Kd-trees

 Traversal N1
o Front-to-back traversal: traverse child nodes in
order along a ray
o Can terminate traversal as soon as an intersection \
between a ray and triangle is found N2 N3

Y g

Current node: N3

Stack:

Kd-trees

 Traversal N1
o Front-to-back traversal: traverse child nodes in
order along a ray
o Can terminate traversal as soon as an intersection \
between a ray and triangle is found N2 N3

A

Current node: N7

Stack: N6

Kd-trees

 Traversal N1
o Front-to-back traversal: traverse child nodes in
order along a ray
o Can terminate traversal as soon as an intersection \
between a ray and triangle is found N2 N3

A

Current node: 4

Stack: N6

Kd-trees

 Traversal N1
o Front-to-back traversal: traverse child nodes in
order along a ray
o Can terminate traversal as soon as an intersection \
between a ray and triangle is found N2 N3

Y g

Current node: N6

Stack:

Kd-trees

 Traversal N1
o Front-to-back traversal: traverse child nodes in
order along a ray
o Can terminate traversal as soon as an intersection \
between a ray and triangle is found N2 N3

Y g

Current node: N8

Stack: N9

Kd-trees

 Traversal N1
o Front-to-back traversal: traverse child nodes in
order along a ray
o Can terminate traversal as soon as an intersection \
between a ray and triangle is found N2 N3

Y g

Current node: §/ (hit and finish)

Stack: N9

Kd-trees

 Traversal N1

o Front-to-back traversal: traverse child nodes in

order along a ray
o Can terminate traversal as soon as an intersection \

between a ray and triangle is found N2

N3

* What's difference compared to the traversal
on BVH? N4 N5 N6 N7

Current node: §/ (hit and finish)
Stack: N9

Other Structures

&
N

* Uniform grids
o Partition the whole space into equal-size cells

* Binary space partition (BSP) tree
o Recursively split space with planes (arbitrary
orientations)

o Kd-tree is a special case of BSP tree: it uses an axis-
aligned plane for partitioning

\

* Octree

o Recursively split space but each inner node has 8
equal-size voxels

Discussion Points

* Axis-aligned bounding box (AABB)?
o Cheap to compute the intersection

[e]

Bounding box may be too loose

Oriented bound box (OBB) can be better to fit objects, but this requires more complex
computations

O

O

Other shapes (e.g., sphere) can be utilized

(@]

What’s the ideal bounding volume?

Discussion Points

* What'’s the best hierarchy?
o Usually need to consider the following:
> Pre-processing time (construction)
° Run-time (rendering)
° Memory to save all the nodes
o Deformable objects can require run-time constructions
o Hybrid?
° Maintain two-level hierarchy
° e.g., top-level: grids, low-level: kd-tree

Further Readings

* Chapter 12

