CT5510: Computer Graphics

Projections

BOCHANG MOON

Graphics Pipeline

Sequence of Spaces and Transformations

Sequence of Spaces and Transformations

Canonical View Volume

Viewport Transformation

 Primitives (or line segments) within the canonical view volume will be mapped to the image

Viewport Transformation

- Ignore the z-coordinates of points for now
 - In practice, we need the z-coordinates and this will be covered later.
- Map the square $[-1,1]^2$ to the rectangle $[-0.5, n_x 0.5] \times [-0.5, n_y 0.5]$

Raster Image (again)

- Ignore the z-coordinates of points for now
 - In practice, we need the z-coordinates and this will be covered later.
- Map the square $[-1,1]^2$ to the rectangle $[-0.5, n_x 0.5] \times [-0.5, n_y 0.5]$
- Where do we need to locate pixels in 2D space?

Raster Image (again)

- Ignore the z-coordinates of points for now
 - In practice, we need the z-coordinates and this will be covered later.
- Map the square $[-1,1]^2$ to the rectangle $[-0.5, n_x 0.5] \times [-0.5, n_y 0.5]$
- Where do we need to locate pixels in 2D space?
- The rectangular domain of a $n_x \times n_y$ image
 - $R = [-0.5, n_x 0.5] \times [-0.5, n_y 0.5]$

Viewport Transformation

- Ignore the z-coordinates of points for now
 - In practice, we need the z-coordinates and this will be covered later.
- Map the square $[-1,1]^2$ to the rectangle $[-0.5, n_x 0.5] \times [-0.5, n_y 0.5]$
- Q. How do we transform a rectangle to another rectangle?

• Problem specification: move a 2D rectangle into a new position

- Problem specification: move a 2D rectangle into a new position
 - Step1. translate: move the point (x_l, y_l) to the origin

- Problem specification: move a 2D rectangle into a new position
 - Step2. scale: resize the rectangle to be the same size of the target.

- Problem specification: move a 2D rectangle into a new position
 - Step3. translate: move the origin to point (x'_l, y'_l)

- Problem specification: move a 2D rectangle into a new position
 - Target = translate (x'_l, y'_l) scale $\left(\frac{x'_h x'_l}{x_h x_l}, \frac{y'_h y'_l}{y_h y_l}\right)$ translate $(-x_l, -y_l)$

$$\bullet = \begin{bmatrix} 1 & 0 & x_l' \\ 0 & 1 & y_l' \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{x_h' - x_l'}{x_h - x_l} & 0 & 0 \\ 0 & \frac{y_h' - y_l'}{y_h - y_l} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_l \\ 0 & 1 & -y_l \\ 0 & 0 & 1 \end{bmatrix}$$

$$\bullet = \begin{bmatrix} \frac{x_h' - x_l'}{x_h - x_l} & 0 & \frac{x_l' x_h - x_h' x_l}{x_h - x_l} \\ 0 & \frac{y_h' - y_l'}{y_h - y_l} & \frac{y_l' y_h - y_h' y_l}{y_h - y_l} \\ 0 & 0 & 1 \end{bmatrix}$$

Viewport Transformation

- Ignore the z-coordinates of points for now
 - In practice, we need the z-coordinates and this will be covered later.
- Map the square $[-1,1]^2$ to the rectangle $[-0.5, n_x 0.5] \times [-0.5, n_y 0.5]$

$$\begin{bmatrix} x_{screen} \\ y_{screen} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & \frac{n_{y - 1}}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{canonical} \\ y_{canonical} \\ 1 \end{bmatrix}$$

For the case with z-coordinates,

$$M_{viewport} = \begin{bmatrix} \frac{n_x}{2} & 0 & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & 0 & \frac{n_y - 1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Sequence of Spaces and Transformations

Projections

Transform 3D points in eye space to 2D points in image space

- Two types of projections
 - Orthographic projection
 - Perspective projection

- Assumption
 - A viewer is looking along the minus z-axis with his head pointing in the y-direction
 - Implies n > f

- The view volume (orthographic view volume) is an axis-aligned box
 - [l, r] x [b, t] x [f, n]
- Notations
 - $x = l \equiv left \ plane, x = r \equiv right \ plane$
 - $y = b \equiv bottom\ plane, y = t \equiv top\ plane$
 - $z = n \equiv near\ plane, z = f \equiv far\ plane$

- Transform points in orthographic view volume to the canonical view volume
 - Also windowing transform (3D)

- Transform points in orthographic view volume to the canonical view volume
 - Also windowing transform (3D)
 - Map a box $[x_l, x_h] \times [y_l, y_h] \times [z_l, z_h]$ to another box $[x_l', x_h'] \times [y_l', y_h'] \times [z_l', z_h']$

$$\begin{bmatrix} \frac{x'_{h} - x'_{l}}{x_{h} - x_{l}} & 0 & 0 & \frac{x'_{l}x_{h} - x'_{h}x_{l}}{x_{h} - x_{l}} \\ 0 & \frac{y'_{h} - y'_{l}}{y_{h} - y_{l}} & 0 & \frac{y'_{l}y_{h} - y'_{h}y_{l}}{y_{h} - y_{l}} \\ 0 & 0 & \frac{z'_{h} - z_{l}'}{z_{h} - z_{l}} & \frac{z'_{l}z_{h} - z'_{h}z_{l}}{z_{h} - z_{l}} \\ 0 & 0 & 1 \end{bmatrix}$$

- Transform points in orthographic view volume to the canonical view volume
 - Also windowing transform (3D)

$$M_{ortho} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Composite Transformation

- The matrix that transforms points in world space to screen coordinate:
- $M = M_{viewport} M_{ortho} M_{viewing}$

- Transform points in orthographic view volume to the canonical view volume
 - Also windowing transform (3D)
- Tend to ignore relative distances between objects and eye
 - Unrealistic
- In practice,
 - We usually do not use this projection.
 - It can be useful in applications where relative lengths should be judged.

Orthographic Projection in OpenGL

- void glOrtho(GLdouble left, GLdouble right,
- GLdouble bottom, GLdouble top,
- GLdouble nearVal, GLdouble farVal);

- Objects in an image become smaller as their distance from the eye increases.
- History of perspective:
 - Artists from the Renaissance period employed the perspective property.

- Objects in an image become smaller as their distance from the eye increases.
- History of perspective:
 - Artists from the Renaissance period employed the perspective property.
- In everyday life?

- $y_S = \frac{d}{z}y$
 - $\circ y_s$: y-axis coordinate in view plane
 - y: distance of the point along the y-axis

Homogeneous Coordinate

- Represent a point (x, y, z) with an extra coordinate w
 - (x, y, z, w)
 - In the previous lecture, w = 1
- Let's define w to be the denominator of the x-, y-, z-coordinates
 - (x, y, z, w) represent the 3D point $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})$
 - A special case, w = 1, is still valid.
 - w can be any values

Projective Transform

- Let's define w to be the denominator of the x-, y-, z-coordinates
 - (x, y, z, w) represent the 3D point $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})$
 - A special case, w = 1, is still valid.
 - w can be any values
- Projective transformation

$$\begin{bmatrix}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
\tilde{w}
\end{bmatrix} = \begin{bmatrix}
a_1 & b_1 & c_1 & d_1 \\
a_2 & b_2 & c_2 & d_2 \\
a_3 & b_3 & c_3 & d_3 \\
e & f & g & h
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}$$

$$(x', y', z') = (\frac{\tilde{x}}{\widetilde{w}}, \frac{\tilde{y}}{\widetilde{w}}, \frac{\tilde{z}}{\widetilde{w}})$$

- Example with 2D homogeneous vector $[y \ z \ 1]^T$

 - This is corresponding to the perspective equation, $y_s = \frac{d}{z}y$.

- Some info. for perspective matrix
 - Define our project plane as the near plane
 - Distance to the near plane: -n
 - Distance to the far plane: -f
- Perspective equation: $y_S = \frac{n}{z}y$
- Perspective matrix

$$P = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

• Perspective matrix

$$P = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

A mapping with the perspective matrix:

$$P \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} nx \\ ny \\ (n+f)z - fn \end{bmatrix} = \begin{bmatrix} \frac{nx}{z} \\ \frac{ny}{z} \\ n+f - \frac{fn}{z} \end{bmatrix}$$

A mapping with the perspective matrix:

$$P \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} nx \\ ny \\ (n+f)z - fn \\ z \end{bmatrix} = \begin{bmatrix} \frac{nx}{z} \\ \frac{ny}{z} \\ n+f - \frac{fn}{z} \end{bmatrix}$$

- Properties
 - The first, second, and fourth rows are for the perspective equation.
 - The third row is for keeping z coordinate at least approximately.
 - E.g., when z = n, transformed z coordinate is still n.
 - E.g., when z > n, we cannot preserve the z coordinate exactly, but relative orders between points will be preserved.

- Perspective matrix
 - Map the perspective view volume to the orthographic view volume.

Composite Transformation

- The matrix that transforms points in world space to screen coordinate:
- $M = M_{viewport} M_{ortho} P M_{viewing} = M_{viewport} M_{per} M_{viewing}$
- $M_{per} = M_{ortho}P$ (perspective projection matrix)

$$M_{per} = \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{l+r}{l-r} & 0\\ 0 & \frac{2n}{t-b} & \frac{b+t}{b-t} & 0\\ 0 & 0 & \frac{f+n}{n-f} & \frac{2fn}{f-n}\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Perspective Projection in OpenGL

- void glFrustum(GLdouble left, GLdouble right,
- GLdouble bottom, GLdouble top,
- GLdouble nearVal, GLdouble farVal);

Perspective Projection in OpenGL

- void gluPerspective(GLdouble fovy, GLdouble aspect,
- GLdouble zNear, GLdouble zFar);
- Parameters
 - fovy: field of view (in degrees) in the y direction
 - aspect: aspect ratio is the ratio of x (width) to y (height)
- Symmetric constraints are implicitly applied.
 - I = -r, b = -t
- A constraint to prevent image distortion

Further Reading

- In our textbook, Fundamentals of Computer Graphics (4th edition)
 - Chapter 7