CT5510: Computer Graphics

Projections

BOCHANG MOON




Graphics Pipeline

Modeling

Transformation
L

Illumination

L
Viewing
Transformation
L

Clipping
v
Projection
v
Rasterization
v

Display




Sequence of Spaces and Transformations

Eve (camera) space
Object space ve ) sp

6. s

Modeling Viewing
transformation transformation

i

World space




Sequence of Spaces and Transformations

Eve (camera) space
Object space ve ) sp

l Screen space

Modeling Viewing Projection Viewport
transformation transformation Transformation Transformation

T

@ﬁ

World space Canonical view volume
(normalized device coordinates)




Canonical View Volume

(1,1,1)

(-1,-1,-1)




Viewport Transformation

*  Primitives (or line segments) within the canonical view volume will be
mapped to the image

Image (or window on the screen)

(1,1,1)

4
I 4 n,, pixels

(-1,-1,-1)

n, pixels



Viewport Transformation

* lgnore the z-coordinates of points for now
° |n practice, we need the z-coordinates and this will be covered later.

* Map the square [—1,1]*to the rectangle [-0.5,n, — 0.5] X [-0.5,n,, — 0.5]

Image (or window on the screen)

(1,1,1)

z
I Y ny pixels

X

(-1,-1,-1)

n, pixels



Raster Image (again)

* lgnore the z-coordinates of points for now
° |n practice, we need the z-coordinates and this will be covered later.

* Map the square [—1,1]*to the rectangle [-0.5,n, — 0.5] X [-0.5,n,, — 0.5]

*  Where do we need to locate pixels in 2D space?

Y T 4x4 image

y=3.5
* o | o | o
o | o | oo
ojo|e o
oo o >
?o,o) y=05 X
x=-0.5 ’ x=3.5



Raster Image (again)

lgnore the z-coordinates of points for now
° |n practice, we need the z-coordinates and this will be covered later.

Map the square [—1,1]*to the rectangle [-0.5,n, — 0.5] X [—0.5,n,, — 0.5]
Where do we need to locate pixels in 2D space?

The rectangular domain of a n, X n,, image
° R =[-0.5,n, — 0.5] X [-0.5,n,, — 0.5]



Viewport Transformation

* lgnore the z-coordinates of points for now
° |n practice, we need the z-coordinates and this will be covered later.

* Map the square [—1,1]*to the rectangle [-0.5,n, — 0.5] X [-0.5,n,, — 0.5]

* Q. How do we transform a rectangle to another rectangle?



Example: Windowing Transform

Problem specification: move a 2D rectangle into a new position

(L y1)

(Xn, Yn)

(x1, y1)

(X1, Yn)




Example: Windowing Transform

*  Problem specification: move a 2D rectangle into a new position

o Stepl. translate: move the point (x;, y;) to the origin

yA

(L y1)

(Xn, Yn)

v

(Xn — X5, Y0 — V1)

v



Example: Windowing Transform

*  Problem specification: move a 2D rectangle into a new position

o Step2. scale: resize the rectangle to be the same size of the target.

yA

(Xn — X1, Yn — Y1)

v

(Xp — X0, Yn — Y1)

v



Example: Windowing Transform

*  Problem specification: move a 2D rectangle into a new position
> Step3. translate: move the origin to point (x;, y;)

yA

(Xp — X0, Yh — Y1)

v

(x1, y1)

(X1, Yn)

v



Example: Windowing Transform

0

Xh—X]

Xy —X)
2= o
Xt | | xn—x1
/ 4 4
Vi 0 Yh—Yi
1 Yh=Y1

0 0

14 14 -

0 xl."Ch—xh.'X'l
Xh—X]
14 14 14 14

Yn=Y1 YiYh—YrY1
Yh=Y1 Yh=Y1

0 1

! 4 ! !
Xpn=X1 Yh=JI

)
Xh=XL Yh—YI1

1 0 —X]
{ 0 1 —Vi
0 O 1

Problem specification: move a 2D rectangle into a new position

> Target = translate(x;, y;) scale (

) translate(—x;, —y;)




Viewport Transformation

lgnore the z-coordinates of points for now
° |n practice, we need the z-coordinates and this will be covered later.

Map the square [—1,1]*to the rectangle [-0.5,n, — 0.5] X [—0.5,n,, — 0.5]

'y 0 =1
Xscreen 2 2 Xcanonical
* |YVscreen| = 0 Ny My-1||Ycanonical
1 K 2 1
L0 O 1 4
* For the case with z-coordinates,
U Ny—17
— 0 0
2 2
ny ny—1
° Myiewport = 0 2 0 2
0 O 1 O
L0 0 0O 1 |



Sequence of Spaces and Transformations

Eve (camera) space
Object space ve ) sp

l Screen space

Modeling Viewing Projection Viewport
transformation transformation Transformation Transformation

T

@ﬁ

World space Canonical view volume
(normalized device coordinates)




Projections

Modeling * Transform 3D points in eye space to 2D points in image

Transformation space
v

Illumination

L
Viewing
Transformation
L

Clipping
v
Projection
v
Rasterization
v

Display

*  Two types of projections
o Orthographic projection

o Perspective projection




Orthographic Projection

* Assumption
o A viewer is looking along the minus z-axis with his head pointing in the y-direction

° Implies n > f

y (rt,f)

k (,b,n) .
z+ .

X




Orthographic Projection

The view volume (orthographic view volume) is an axis-aligned box
° [I, rIx[b, t] x [f, n]
* Notations
o x =1 = leftplane,x = r = right plane
oy = b = bottom plane,y =t = top plane

° z =n = near plane,z = f = far plane

y (rt,f)

k (I,b,n) .
z+ >

X




Orthographic Projection

* Transform points in orthographic view volume to the canonical view volume
> Also windowing transform (3D)

Projection
transformation

(r,t,f) (1,1,1)

(1,b,n)

(-1,-1,-1)




Orthographic Projection

Transform points in orthographic view volume to the canonical view volume
> Also windowing transform (3D)

> Map a box [x;, xp] X [, yn] X [2;, zn] to another box [x7, xp] X [vi, ypl X [z, zp]

— , —
xh—xl O O xl.X'h—xhXI
Xh—X] Xh—X]
! ! ! !
0 WM g Ynovin
° Yh=Y1 Yh=Y1
0 0 Zf,l_Zl’ Z{Zh—Z}’lZl
Zp—2Z] Zp—Z]
0 O 0 1




Orthographic Projection

Transform points in orthographic view volume to the canonical view volume
> Also windowing transform (3D)

- 2 r+l
— —

2 t+b
Mortho — 0 t—=b g _t;l_{jl_f
00 T TRy

00 9 1




Composite Transtformation

* The matrix that transforms points in world space to screen coordinate:

M = MviewportMortho Mviewing



Orthographic Projection

* Transform points in orthographic view volume to the canonical view volume
> Also windowing transform (3D)

* Tend to ignore relative distances between objects and eye
o Unrealistic

* |n practice,
o We usually do not use this projection.
° |t can be useful in applications where relative lengths should be judged.



Orthographic Projection in OpenGL

* void glOrtho(GLdouble left, GLdouble right,

. GLdouble bottom, GLdouble top,
. GLdouble nearVal, GLdouble farVal);
(rt,f)
(I,b,n)




Perspective Projection

* Objects in an image become smaller as their distance from the eye increases.

* History of perspective:
o Artists from the Renaissance period employed the perspective property.

Images from wikipedia




Perspective Projection

* Objects in an image become smaller as their distance from the eye increases.

* History of perspective:
o Artists from the Renaissance period employed the perspective property.

* |In everyday life?




Perspective Projection

d
C Vs =Y

° Y, y-axis coordinate in view plane
o y: distance of the point along the y-axis

- ’.
- 4‘
c -
-
-
-
-
©
-
-
— -
-
-
-
-
-
-
-
-
-
-
-
; -
-
-
-
-
-
-
-
-
-
-
()] -
-
- e
. -
-
> -
-
-
-
-
-
-
-
-
-
-
-
-
-
e A
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- ,]
- S
-
-
-
-
-
-
-
-
-
-
-
e -
-
-
-
-
.-
== \ 4 v
<— »
< »




Homogeneous Coordinate

* Represent a point (x, y, z) with an extra coordinate w
o (x,v,2z,w)
° |In the previous lecture, w = 1

* Let’s define w to be the denominator of the x-, y-, z-coordinates
o 1 ﬁ X E
(x,y,z,w) represent the 3D point (W, = W)
o A special case, w = 1, is still valid.
° w can be any values



Projective Transform

* Let’s define w to be the denominator of the x-, y-, z-coordinates
o it (XY Z
(x,y,z,w) represent the 3D point (W, =, W)
o A special case, w = 1, is still valid.
° w can be any values

* Projective transformation
%] [m bi ¢ dq]
a, by ¢ d;

=N R

:sz N S R



Perspective Projection

*  Example with 2D homogeneous vector [y z 1]
)= d 0 0]
O 1 0

. . d
° This is correspondlng to the perspective equation, y, = ~y.



Perspective Projection

*  Some info. for perspective matrix
o Define our project plane as the near plane
> Distance to the near plane: —n
o Distance to the far plane: —f

* Perspective equation: y, = gy

* Perspective matrix
n 0 0 0 ]
0 0

oP:O n
0 0 n+f —fn
0 0 1 0 |




Perspective Projection

* Perspective matrix

n 0 0 0

0 n 0 0

0 0 n+f —fn
0 0 1 0 |

o P =

* A mapping with the perspe_ctiv%;natr_ix:

X i nx 7 z

z| |n+fz—fn]| fn

1 ] P | Tl+f—7
1




Perspective Projection

* A mapping with the perspe_ctiven;natr_ix:

X i nx z
oply:|_ - ) %
z[ |+ fz—fn| fn
] z ntf-7
i 1 i

*  Properties

> The first, second, and fourth rows are for the perspective equation.
> The third row is for keeping z coordinate at least approximately.
° E.g., when z = n, transformed z coordinate is still n.

> E.g., when z > n, we cannot preserve the z coordinate exactly, but relative orders between points will be
preserved.




Perspective Projection

* Perspective matrix
> Map the perspective view volume to the orthographic view volume.

>




Composite Transtformation

* The matrix that transforms points in world space to screen coordinate:

M = MviewportMorthovaiewing = MviewportMpeeriewing

* Myer = MyrinoP (perspective projection matrix)
r2n l+r T
- i
2n bt
° Mper = t—b b-t
f+n 2fn
oo = L
n—f -n
00 | 4l



Perspective Projection in OpenGL

* void glFrustum(GLdouble left, GLdouble right,

GLdouble bottom, GLdouble top,
GLdouble nearVal, GLdouble farVal);

>




Perspective Projection in OpenGL

void gluPerspective(GLdouble fovy, GLdouble aspect,
GLdouble zNear, GLdouble zFar);

Parameters
> fovy: field of view (in degrees) in the y direction
o aspect: aspect ratio is the ratio of x (width) to y (height)

Symmetric constraints are implicitly applied.
o |l=-r,b=-t

A constraint to prevent image distortion
o Mx _ T

ny, t



Further Reading

* |n our textbook, Fundamentals of Computer Graphics (4t edition)
o Chapter 7



