CT5202: Photorealistic Rendering

Variance Reduction Techniques

Lecturer: Bochang Moon

Multiple Importance Sampling

- Proposed by Eric Veach
- Assume we have multiple (more than one) sampling techniques
- Q. How do we combine the techniques?
- Motivation:
 - Light transport integral is complex (most terms are unknown and should be estimated)
 - Designing a sampling technique, which works well for a variety of situations, is difficult

Applications

- Glossy highlights from area light sources
- Common sampling techniques
 - Sampling the light sources
 - Sampling the BRDF

Light transport for direct lighting

$$L_S(x, k_o) = \int_{all \ x'} \frac{\rho(k_i, k_o) L_e(x', -k_i) v(x, x') cos\theta_i cos\theta'}{\left| |x - x'| \right|^2} dA'$$

Applications

(a) Sampling the BSDF

(b) Sampling the light sources

Applications

Sampling the light sources

•
$$p(x') \propto \frac{L_e(x',-k_i)\cos\theta_i\cos\theta'}{||x-x'||^2}$$

- Sampling the BRDF
 - $p(k_i) \propto \rho(k_i, k_o)$

Glossy surface

Light transport for direct lighting

$$L_S(x, k_o) = \int_{all \ x'} \frac{\rho(k_i, k_o) L_e(x', -k_i) v(x, x') cos\theta_i cos\theta'}{\left| |x - x'| \right|^2} dA'$$

Multi-Sample Estimator

- A combination strategy to average samples from multiple sampling techniques
- $\int_{\Omega} f(x)d\mu(x)$ $f: \Omega \to R$
- Samples $(j = 1, ..., n_i)$ from i-th sampling
 - $X_{i,j}$
- Multi-sample estimator

•
$$F = \sum_{i=1}^{n} 1/n_i \sum_{j=1}^{n_i} w_i (X_{i,j}) \frac{f(X_{i,j})}{p_i(X_{i,j})}$$

- Conditions for unbiasedness
 - $\sum_{i=1}^{n} w_i(x) = 1$ whenever $f(x) \neq 0$
 - $w_i(x) = 0$ whenever $p_i(x) = 0$
 - See the Veach's thesis for the proof.

Multi-Sample Estimator

The balance heuristic

$$\widehat{w}_i(x) = \frac{n_i p_i(x)}{\Sigma_k n_k p_k(x)}$$

(b) Sampling the light sources

•
$$\theta = \int_{\Omega} f(x) d\mu(x)$$

- Monte Carlo estimator
 - $\hat{\theta} = \frac{1}{N} \Sigma_{i} f(X_{i})$
- Suppose:
 - pdf(X) = pdf(-X)
 - i.e., a symmetric pdf of X
- Define a variable
 - $Y_i \equiv \frac{f(X_i) + f(-X_i)}{2}$
 - Y_i is an unbiased estimate of θ , $E[Y] = E[f(X)] = \theta$
 - $\hat{\theta}^{av} = \frac{1}{N} \Sigma_i Y_i$

- (original) Monte Carlo estimator
 - $\hat{\theta} = \frac{1}{N} \Sigma_{i} f(X_{i})$
- New estimator
 - $\hat{\theta}^{av} = \frac{1}{N} \Sigma_i Y_i$
- Suppose I.I.D:
 - $\operatorname{var}(f(X_i)) = \operatorname{var}(f(X_j)) = \sigma^2$
- Variance of estimators
 - $var(\hat{\theta}) = var(\frac{1}{N}\Sigma_{i}f(X_{i})) = \frac{1}{N^{2}}\Sigma_{i}var(f(X_{i})) = \frac{1}{N^{2}}\Sigma_{i}\sigma^{2} = \frac{\sigma^{2}}{N}$
 - $var(\hat{\theta}^{av}) = var(\frac{1}{N}\Sigma_i Y_i) = \frac{1}{N^2}\Sigma_i var(Y_i)$

Variance of estimators

•
$$var(\hat{\theta}) = var(\frac{1}{N}\Sigma_{i}f(X_{i})) = \frac{1}{N^{2}}\Sigma_{i}var(f(X_{i})) = \frac{1}{N^{2}}\Sigma_{i}\sigma^{2} = \frac{\sigma^{2}}{N}$$

•
$$var(\hat{\theta}^{av}) = var(\frac{1}{N}\Sigma_i Y_i) = \frac{1}{N^2}\Sigma_i var(Y_i)$$

$$var(Y_i) = var\left(\frac{f(X_i) + f(-X_i)}{2}\right) = \frac{1}{4}\left[var(f(X_i)) + var(f(-X_i)) + 2cov(f(X_i), f(-X_i))\right]$$

- Putting $var(Y_i)$ into $var(\hat{\theta}^{av})$:
- $var(\widehat{\theta}^{av}) = \frac{1}{4N^2} \Sigma_i \{ 2\sigma^2 + 2cov(f(X_i), f(-X_i)) \} = \frac{1}{2N^2} \Sigma_i \{ \sigma^2 + cov(f(X_i), f(-X_i)) \}$
- If there is no correlation
 - $var(\hat{\theta}^{av}) = \frac{\sigma^2}{2N} = \frac{var(\hat{\theta})}{2}$
 - No actual gain here since we use 2N samples instead of N samples
- What if there is a negative correlation?
 - $var(\hat{\theta}^{av}) < \frac{var(\hat{\theta})}{2}$

- Antithetic variates introduces a negative correlation for monotonically increasing functions
 - $\circ cov(f(X_i), f(-X_i)) < 0$
 - e.g., linear functions ideal case
- Properties
 - Very simple to implement it even for high-dimensional cases
 - Some applications in rendering:
 - Direct lighting
 - Pixel estimator in PSS?

Common Random Numbers (CRN)

- Suppose we want to estimate a difference between two functions
 - $\theta_1 = \int_{\Omega} f_1(x) d\mu(x)$
 - $\theta_2 = \int_{\Omega} f_2(x) d\mu(x)$
 - $\theta = \theta_1 \theta_2$
- MC estimator

$$\hat{\theta} = \frac{1}{N} \Sigma_i f_1(X_i) - \frac{1}{N} \Sigma_j f_2(X_j)$$

- CRN estimator
 - $\hat{\theta} = \frac{1}{N} \Sigma_i f_1(X_i) \frac{1}{N} \Sigma_i f_2(X_i) = \frac{1}{N} \Sigma_i (f_1(X_i) f_2(X_i))$

Common Random Numbers (CRN)

- CRN estimator
 - $\hat{\theta} = \frac{1}{N} \Sigma_i f_1(X_i) \frac{1}{N} \Sigma_i f_2(X_i) = \frac{1}{N} \Sigma_i (f_1(X_i) f_2(X_i))$
 - $var(\hat{\theta}) = var(\frac{1}{N}\Sigma_i(f_1(X_i) f_2(X_i))) = 1/N^2\Sigma_i var(f_1(X_i) f_2(X_i))$
 - $var(f_1(X_i) f_2(X_i)) = var(f_1(X_i)) + var(f_2(X_i)) 2cov(f_1(X_i), f_2(X_i))$
- What if $cov(f_1(X_i), f_2(X_i)) = 0$?
 - No actual gain over the ordinary MC estimator.

Common Random Numbers (CRN)

- When the two functions tend to increase (or decrease) together,
 - $cov(f_1(X_i), f_2(X_i)) > 0$
 - e.g., both functions are linear whose derivatives have the same sign.
- Applications in rendering
 - Estimating image gradients
 - (screened) Poisson reconstruction takes the image gradients to output a reconstructed image
- Q. can we decide whether or not we apply the CRN?
 - In practice, it is hard to know if there is such correlation in advance.
 - However, implementing and testing CRN are very easy.

CRN examples

Path tracing with CRN numbers, 76 samples per pixel

- Image gradients can be estimated via correlated sampling
 - I(x + 1, y) I(x, y)
 - I(x, y + 1) I(x, y)
- The variance of the estimated gradients can be smaller than the pixel color when then the covariance term is positive
 - var(I(x + 1, y) I(x, y)) = var(I(x + 1, y)) + var(I(x, y)) 2cov(I(x + 1, y), I(x, y))

- Rendering estimates three images:
 - Primal colors (e.g., standard path tracing)
 - Image gradients (e.g., correlated samplings such as CRNs, shift mapping, and path reusing)

Images from [Ha et al. 2019]

Screened Poisson Reconstruction

$$\hat{y} = \underset{\overline{y}}{\text{argmin}} \sum_{i=1}^{n} \lVert \alpha(y_i - \overline{y}_i) \rVert^2 + \sum_{i=1}^{n} \left\lVert g_i^{dx} - D^{dx} \overline{y}_i \right\rVert^2 + \sum_{i=1}^{n} \left\lVert g_i^{dy} - D^{dy} \overline{y}_i \right\rVert^2$$

- g_i^{dx} , g_i^{dy} : Estimated gradients at pixel i in x and y directions
- y_i: Pixel color at i
- α : user-parameter (e.g., 0.2)
- D^{dx} , D^{dy} : differential operator in x and y directions (i.e., finite differences)
- Has a closed-form solution (i.e., normal equation) when the norm is L2

- When L2 reconstruction is used, the output is unbiased.
- One may use a neural network that takes the three inputs
 - e.g., Deep Convolutional Reconstruction for Gradient-Domain Rendering, Kettunen et al. 2019
- More information:
 - EG STAR paper 2019: A Survey on Gradient-Domain Rendering, Hua et al. 2019

Control Variates

- $\theta = \int_{\Omega} f(x) d\mu(x)$
- Monte Carlo estimator
 - $\circ \hat{\theta} = \frac{1}{N} \Sigma_{i} f(X_{i})$
- Define a control variate g(x) whose integration G is known.
 - $\theta = \int_{\Omega} f(x) \alpha g(x) d\mu(x) + \alpha G$
 - $\hat{\theta}^{cv} = \frac{1}{N} \Sigma_{i} (f(X_{i}) \alpha g(X_{i})) + \alpha G$

Control Variates

- When $\alpha = 1$
 - $\hat{\theta}^{cv} = \frac{1}{N} \Sigma_i (f(X_i) g(X_i)) + G$
 - $var(\hat{\theta}^{cv}) = \frac{1}{N^2} \Sigma_i var(f(X_i) g(X_i)) = 1/N^2 \{ \Sigma_i var(f(X_i)) + var(g(X_i)) 2cov(f(X_i), g(X_i)) \}$
 - Assume that:
 - $var(f(X_i)) = var(g(X_i)) = \sigma^2$
 - $cov(f(X_i), g(X_i)) = \sigma_{f,g}^2$
 - $corr(f(X_i), g(X_i)) = corr_{f,g} = \frac{\sigma_{f,g}^2}{\sigma_f \sigma_g} = \sigma_{f,g}^2 / \sigma^2$
 - $var(\hat{\theta}^{cv}) = \frac{\Sigma_i 2\sigma^2}{N^2} \frac{2\Sigma_i \sigma_{f,g}^2}{N^2} = \frac{2\sigma^2}{N} \frac{2\sigma_{f,g}^2}{N}$
 - Variance of the original estimator with the same sample count N
 - $var(\hat{\theta}) = \frac{\sigma^2}{2N}$
 - Condition for $var(\hat{\theta}^{cv}) < var(\hat{\theta})$
 - $\frac{2\sigma^2}{N} \frac{2\sigma_{f,g}^2}{N} < \frac{\sigma^2}{2N}$
 - $\circ \quad \frac{3\sigma^2}{4} < \sigma_{f,g}^2$
 - $\frac{3}{4} < corr_{f,g}$

Control Variates

• When
$$\alpha = \frac{\sigma_{f,g}^2}{\sigma_g^2} = \frac{\sigma_{f,g}^2}{\sigma^2}$$

$$\hat{\theta}^{cv} = \frac{1}{N} \Sigma_i (f(X_i) - \alpha g(X_i)) + \alpha G$$

$$var(\hat{\theta}^{cv}) = \frac{1}{N^2} \Sigma_i var(f(X_i) - \alpha g(X_i)) = 1/N^2 \{ \Sigma_i var(f(X_i)) + \alpha^2 var(g(X_i)) - 2\alpha cov(f(X_i), g(X_i)) \}$$

$$\circ = \frac{\sigma^2}{N} + \frac{\alpha^2 \sigma^2}{N} - \frac{2\alpha \sigma_{f,g}^2}{N}$$

$$\circ = \frac{\sigma^2}{N} + \frac{corr_{f,g}^2 \sigma^2}{N} - \frac{2corr_{f,g}^2 \sigma^2}{N}$$

$$= \frac{\sigma^2}{N} \left(1 - corr_{f,g}^2 \right)$$

• Condition for $var(\hat{\theta}^{cv}) < var(\hat{\theta})$

$$\circ \ \frac{\sigma^2}{N} \left(1 - corr_{f,g}^2 \right) < \frac{\sigma^2}{2N}$$

•
$$1/2 < corr_{f,g}^2$$

$$\frac{1}{4} < |corr_{f,g}|$$

Resampled Importance Sampling

- $I = \int_D f(x) d\mu(x)$
- $\hat{I} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(y_i)}{q(y_i)}$
- For importance sampling,
 - q should be normalized (i.e., a valid pdf)
 - Able to sample y_i easily (efficiently) via inverse CDF or rejection sampling
 - Otherwise, we need a workaround (e.g., resampled importance sampling)

Resampled Importance Sampling

- Procedure
 - Generate M ($M \ge 1$) proposal samples from the source pdf p
 - $^{\circ} \quad X = \{x_1, \dots, x_M\}$
 - \circ Assumption: we can easily sample from the p, but the p may be not a good approximation of the f
 - Compute a weight $w(x_i)$ for x_i
 - $w(x_i) = \frac{q(x_i)}{p(x_i)}$
 - (resampling) Generate N samples with replacement from X
 - Probability of selecting x_i is proportional to $w(x_i)$
 - $^{\circ} \quad Y = \{y_1, \dots, y_N\}$
 - Estimation
 - $\hat{I} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(y_i)}{g(y_i)} \frac{1}{M} \sum_{j=1}^{M} w(x_j)$
- Note:
 - Can use an unnormalized q (also hard to sample from it), but it approximates f well
- Ref.
 - Importance Resampling for Global Illumination [Talbot and Cline 2005]