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Multiple Importance Sampling

*  Proposed by Eric Veach
* Assume we have multiple (more than one) sampling techniques

* Q. How do we combine the techniques?

* Motivation:
o Light transport integral is complex (most terms are unknown and should be estimated)

> Designing a sampling technique, which works well for a variety of situations, is
difficult



Applications

* Glossy highlights from area light sources

*  Common sampling techniques
o Sampling the light sources

o Sampling the BRDF

* Light transport for direct lighting
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Applications

(a) Sampling the BSDF




Applications

* Sampling the light sources n
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* Light transport for direct lighting
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Multi-Sample Estimator

* A combination strategy to average samples from multiple sampling
techniques

« [y F)du(x)

o f: Q>R

Samples (j = 1, ...,n;) from i-th sampling
° X;

Multi-sample estimator
e f(Xi))
F=Y" 1/n Y00 wi(X; ,)p Fep)
o Conditions for unbiasedness
Xt w;(x) = 1 whenever f(x) # 0
o w;(x) = 0 whenever p;(x) =0

o See the Veach'’s thesis for the proof.



Multi-Sample Estimator

* The balance heuristic
n;p;(x)

s wi(x) = ZpNEPr(X)

(a) Sampling the BSDF (b) Sampling the light sources

Imaies from the Veach’s thesis



Antithetic Variates

© 0= [, fdu(x)

*  Monte Carlo estimator
A1
0 =S Lif(X))

*  Suppose:

° pdf (X) = pdf (—X)
° i.e., a symmetric pdf of X

* Define a variable
-y, = LX)
o Y; is an unbiased estimate of 8, E[Y] = E[f(X)] = 6

A 1
° 0% =LY




Antithetic Variates

* (original) Monte Carlo estimator
A1
0 =S Lif(X))

* New estimator
0 6% = %Eiyi

* Suppose I.I.D:
> var(f(X;)) = var (f(X]-)) = g2
* Variance of estimators
A 2
> var(6) = var (%ZJ(XQ) = %Zivar(f(Xi)) = %Ziaz = %

o var(éa”) = var (%ZiYi) = %Zivar(yi)



Antithetic Variates

* Variance of estimators
> var(9) = var (%Zif(Xi)) = %Zivar(f(Xi)) = %Ziaz =
o var(é“”) = var (EZ-Y-) = iZ-var(Y-)
o var(Y;) = var (f(Xl)Jrf( X‘)) [var(f(X )) + var(f( —X; )) + ZCov(f(X) f(—=X; ))]

o Putting var(Y;) into var(é“”):

> var(0%) = ﬁzi{ZUz + 2cov(f(Xy), f(—=X))} = ZNzZ {o? + cov(F (X)), f (X))}
> If there is no correlation

o var(é‘”’) = % = _varz(é)

o No actual gain here since we use 2N samples instead of N samples

o What if there is a negative correlation?

o var(@‘”’) < — var(@)



Antithetic Variates

* Antithetic variates introduces a negative correlation for monotonically
increasing functions

> cov(f(X), f(—X)) <0

° e.g., linear functions — ideal case

* Properties
> Very simple to implement it even for high-dimensional cases
° Some applications in rendering:
> Direct lighting
> Pixel estimator in PSS?



Common Random Numbers (CRN)

Suppose we want to estimate a difference between two functions
° 01 = fg f1(x)du(x)

° 0, = fg f2(x)du(x)
° 0 =60, —0,

MC estimator
A 1 1
°o g = NZlfl(Xl) — NZJfZ(X])

CRN estimator

6 = §Zifi (X)) — TR (X)) = 1 E(AGD) — £(X0)



Common Random Numbers (CRN)

CRN estimator
6 = 3Eif (X)) — 5 Zif (X)) = 3 Ei(A (D) — (X))
var(0) = var (25:(A06) - £,00) ) = 1/N?Zwar(f,06) - ()

var(fi(X) — (X)) = var(f1 (X)) + var(f2(X;)) — 2cov(f (X)), f(X))
What if cov(fl(Xl-),fz (Xl-)) =07

No actual gain over the ordinary MC estimator.




Common Random Numbers (CRN)

* When the two functions tend to increase (or decrease) together,

Cov(fl(Xi)»fz (Xi)) >0

e.g., both functions are linear whose derivatives have the same sign.

* Applications in rendering

*  Estimating image gradients

(screened) Poisson reconstruction takes the image gradients to output a reconstructed image

* Q. can we decide whether or not we apply the CRN?
* In practice, it is hard to know if there is such correlation in advance.

*  However, implementing and testing CRN are very easy.



CRN examples

Path tracing with CRN numbers, 76 samples per pixel



Applications of Correlated Sampling: Gradient-Domain Rendering

* Image gradients can be estimated via correlated sampling
o Ix+1,y) —I(xy)
c lxy+1) - Ixy)

* The variance of the estimated gradients can be smaller than the pixel color when then
the covariance term is positive

o var(Ix+ 1,y) —I(x,y)) = var(l(x + 1,y)) + var(I(x,y)) — 2cov(I(x + 1,y),1(x,y))




Applications of Correlated Sampling: Gradient-Domain Rendering

* Rendering estimates three images:
o Primal colors (e.g., standard path tracing)
° Image gradients (e.g., correlated samplings such as CRNs, shift mapping, and path reusing)

(a) Input color image, 512 spp (b) Input gradients in (c) Input gradients in (d) L2
relMSE 0.1318 horizontal direction vertical direction relMSE 0.0184

Images from [Ha et al. 2019]




Applications of Correlated Sampling: Gradient-Domain Rendering

Screened Poisson Reconstruction

2
© 9 = argmin XL lla(y; — DI + Xyflg®™ — DO + 2L, [ - D
y

. gfb‘, g?y: Estimated gradients at pixel i in x and y directions

y;i: Pixel color at i

*  «a:user-parameter (e.g., 0.2)

DY% DIY: differential operator in x and y directions (i.e., finite differences)

Has a closed-form solution (i.e., normal equation) when the norm is L2




Applications of Correlated Sampling: Gradient-Domain Rendering

*  When L2 reconstruction is used, the output is unbiased.

* One may use a neural network that takes the three inputs
> e.g., Deep Convolutional Reconstruction for Gradient-Domain Rendering, Kettunen et al. 2019

*  More information:
o EG STAR paper 2019: A Survey on Gradient-Domain Rendering, Hua et al. 2019




Control Variates

0= [, flx)dux)

Monte Carlo estimator
A 1
0 =S Lif(X))

Define a control variate g(x) whose integration G is known.
© 6 = [, fOO) - ag()du(x) + aG
o 0 = =%, (X)) — ag(X) + a6




Control Variates

° Whena=1
o OV = %Zi(f(xi) - g(X))+G

o var(8) = %Zivar(f(xi) —g(Xp) = 1/N2{Zivar(f(Xi)) +var(g (X)) — 2cov(f(Xy), (X))}
> Assume that:

> var(f(X;)) = var(g(X;)) = o2

o cov(f(X), g(X) = of

2
g
o COT'T(f(Xl);g(XL)) = COT'T'f,g = o'ff = fz'g/o-z

f%g
2 2
~ ¥ 252 2%0 202 20

> Variance of the original estimator with the same sample count N
~ o2
var(@) =N

> Condition for var(9<”) < var(8)

202 20}, o2
N N 2N
302 2
: 4 < O-f!g

3
© Z < COT'Tf'g



Control Variates

2 2
o o
* Whena = (f'zgz (f'zg
)

o o = %zi(f(xi) —ag(Xy) + aG
o var(6v) = %Zivar(f(Xi) — ag(Xy)) = 1/N?{Zwar(f(X)) + a?var(g(X;)) — 2acov(f (X)), g(X)))}

2

o = +

F N N
2 2 2 2
_ 0_2 n CoTrTf 60 B Zcorrf'ga
N N N
2
_g _ 2
C = (1 corrf’g)

> Condition for var(6”) < var(8)
a? 2 a?
C (1 —corr?,) < o
o 1/2 < corrfz’g

o %< |corry 4|



Resampled Importance Sampling

CI= [ f)du)

. [=lyn f(i)
N =g

*  For importance sampling,
> @ should be normalized (i.e., a valid pdf)

> Able to sample y; easily (efficiently) via inverse CDF or rejection sampling

o Otherwise, we need a workaround (e.g., resampled importance sampling)




Resampled Importance Sampling

*  Procedure
Generate M (M > 1) proposal samples from the source pdf p

o

© X={X1, ...,XM}
o Assumption: we can easily sample from the p, but the p may be not a good approximation of the f
Compute a weight w(x;) for x;

o

o

(resampling) Generate N samples with replacement from X
> Probability of selecting x; is proportional to w(x;)

© Y ={y,....,yn}

Estimation

> 1Ny fO) 1am
I_ﬁ i=1 q(y;) sz=1w(x])

o

o

°* Note:
> Can use an unnormalized g (also hard to sample from it), but it approximates f well

* Ref.
Importance Resampling for Global lllumination [Talbot and Cline 2005]

o
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