CT5202: Photorealistic Rendering

Light Transport Equation

Lecturer: Bochang Moon

•
$$L_s(k_o) = \int_{all \ k_i} \rho(k_i, k_o) L_f(k_i) \cos\theta_i d\sigma_i$$

- $L_f(k_i)$: field radiance from k_i direction
- $L_s(k_o)$: surface radiance measured in k_o direction
- Rendering equation [Immel, Cohen & Greenberg, 1986]
- We can also write the equation with surface radiances only [Kajiya, 1986]

•
$$L_s(k_o) = \int_{all \ k_i} \rho(k_i, k_o) L_f(k_i) \cos\theta_i d\sigma_i$$

• $L_s(-k_i) = L_f(k_i)$

• Solid angle subtended by the point x'

• Area on a unit sphere

•
$$\Delta \sigma_i = \frac{\Delta A' \cos \theta'}{||x - x'||^2}$$

- $\Delta A'$ is the area associated with x'
- Differential solid angle • $d\sigma_i = \frac{dA' \cos\theta'}{||x-x'||^2}$

n

 \boldsymbol{x}

 $\boldsymbol{\theta}_{\boldsymbol{i}}$

•
$$L_s(k_o) = \int_{all \ x' visible \ to \ x} \frac{\rho(k_i, k_o) L_s(x', x - x') cos \theta_i cos \theta'}{||x - x'||^2} dA'$$

•
$$L_s(k_o) = \int_{all x'} \frac{\rho(k_i, k_o) L_s(x', x - x') \nu(x, x') \cos\theta_i \cos\theta'}{||x - x'||^2} dA'$$

- Rendering equation [Kajiya, 1986]
- v(x, x'): visibility function
- 1 if x and x' are mutually visible
- 0 otherwise

Image Contribution Function

- The value of pixel j:
- $I_j = \int_{\Omega} h_j(x) L(x) d\Omega$
 - Note that we aim to reconstruct a discretized 2D function (i.e., a raster image)
 - L(x): radiance from x
 - h_i : a pixel reconstruction filter of pixel j
 - Typically it depends on the samples' image positions
 - What are the examples?
 - Box filter
 - Gaussian filter
 - Polynomial filters

Image Contribution Function

- The value of pixel j:
- $I_j = \int_{\Omega} h_j(x) L(x) d\Omega$

- Primary sample space formulation:
 - The integration domain Ω can be considered $[0,1)^d$
- e.g.,
 - A typical implementation of path tracing relies on a random number generation that draws uniform samples *x*
 - Light path vertices are determined by the random samples
 - It always returns a radiance value L(x)

Path Space Formulation

- The value of pixel j:
- $I_j = \int_{\mathbf{P}} h_j(\bar{x}) L(\bar{x}) d\mu(\bar{x})$
 - $\bar{x} = \{x_0, \dots, x_n\}$
 - $\,\circ\,\, \bar{x}$ is the path vertices that define a light path from the image plane to light sources
 - x_0 : the position on the image plane
 - This is called path integral formulation [Veach and Guibas 1995, 1997]

Conclusion

- The integral of light transport equation can be represented in multiple ways
- Which ones should be used?
 - It depends on the light transport algorithm that you actually relies on.

Paper Presentation & Project

- Each student should select an interesting problem, which is related to this course
 - Present two papers (20 min. presentation + 20 min. Q&A)