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Fundamentals of Photorealistic Rendering
(Path Tracing and Photon Mapping)
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Image Synthesis
• Pixel intensity at (x, y)

o I(x, y) = ∫ ∫ ∫ ∫ ∫ f(x − x′, y − y′) L(x′ , y′,u′, v′, t′) dt′du′dv′dx′dy′

• Notes
o Pixel is a point (not an area): requires a pixel reconstruction filter

• f x − x′, y − y′
o Pixel reconstruction filter with a small width (e.g., box filter)

• x′, y′: 2D random samples on the image plane

• u′, v′: 2D random samples on the lens (for depth-of-fields)

• t′: 1D time sample (for motion blur)

• The 5D samples define a 5D camera sample, and thus a primary ray
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Image Synthesis
• Pixel intensity at (x, y) can be represented into:

o I(x, y) = ∫ ∫ ∫ ∫ ∫ f(x − x′, y − y′) L(x′ , y′,u′, v′, t′) dt′du′dv′dx′dy′

• The 5D samples define a 5D camera sample and thus a primary ray
o 1) Find an surface point x via ray tracing

 Determine the x, 𝑘𝑘𝑜𝑜

o 2) Solve the rendering equation at x

 𝐿𝐿𝑠𝑠 𝑘𝑘𝑜𝑜 = 𝐿𝐿𝑒𝑒 𝑘𝑘𝑜𝑜 + ∫𝑎𝑎𝑙𝑙𝑙𝑙 𝑘𝑘𝑖𝑖 𝜌𝜌 𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑜𝑜 𝐿𝐿𝑓𝑓 𝑘𝑘𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑑𝑑𝜎𝜎𝑖𝑖
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Outline
• Path Tracing

• Path Tracing with Next Event Estimation

• Background: Density Estimation

• Photon Mapping

• Progressive Photon Mapping
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Global Illumination
• Global illumination methods consider both direct and indirect lighting

Without indirect lighting With indirect lighting



Path Tracing
• 𝐿𝐿𝑠𝑠 𝑘𝑘𝑜𝑜 = 𝐿𝐿𝑒𝑒 𝑘𝑘𝑜𝑜 + ∫𝑎𝑎𝑙𝑙𝑙𝑙 𝑘𝑘𝑖𝑖 𝜌𝜌 𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑜𝑜 𝐿𝐿𝑓𝑓 𝑘𝑘𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑑𝑑𝜎𝜎𝑖𝑖

• Monte Carlo integration
o ∫𝑥𝑥∈𝑆𝑆 𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑 ≈ 1

𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝑔𝑔(𝑥𝑥𝑖𝑖)

𝑝𝑝(𝑥𝑥𝑖𝑖)

o When N=1,

o 𝐿𝐿𝑠𝑠 𝑘𝑘𝑜𝑜 ≈ 𝐿𝐿𝑒𝑒 𝑘𝑘𝑜𝑜 + 𝜌𝜌 𝑘𝑘𝑖𝑖,𝑘𝑘𝑜𝑜 𝐿𝐿𝑓𝑓 𝑘𝑘𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖
𝑝𝑝(𝑘𝑘𝑖𝑖)

o Need to do:
 Select a random direction 𝑘𝑘𝑖𝑖
 Evaluate 𝐿𝐿𝑓𝑓 𝑘𝑘𝑖𝑖



Path Tracing
• 𝐿𝐿𝑠𝑠 𝑘𝑘𝑜𝑜 ≈ 𝐿𝐿𝑒𝑒 𝑘𝑘𝑜𝑜 + 𝜌𝜌 𝑘𝑘𝑖𝑖,𝑘𝑘𝑜𝑜 𝐿𝐿𝑓𝑓 𝑘𝑘𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑑𝑑𝜎𝜎𝑖𝑖

𝑝𝑝(𝑘𝑘𝑖𝑖)

• In case of the ideal diffuse surface:
o 𝜌𝜌 = 𝑅𝑅

𝜋𝜋

o When we choose a density function 𝑝𝑝 𝑘𝑘𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖
𝜋𝜋

 𝐿𝐿𝑠𝑠 𝑘𝑘𝑜𝑜 ≈ 𝐿𝐿𝑒𝑒 𝑘𝑘𝑜𝑜 + 𝑅𝑅𝐿𝐿𝑓𝑓 𝑘𝑘𝑖𝑖

 Note that we can cancel out the cosign terms



Path Tracing
• A general rendering method that solves the full light transport equation (i.e., rendering equation)

• For each pixel color, it makes multiple ray paths, then averages the colors from the ray paths

4 samples / pixel (1.25 secs) 16 samples / pixel (5 secs) 64 samples / pixel (20 secs)



Outline
• Path Tracing

• Path Tracing with Next Event Estimation

• Background: Density Estimation

• Photon Mapping

• Progressive Photon Mapping
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Problems in Naïve Path Tracing
• Issues: Hard to find a light path (very high variance)

o i.e., the probability of hitting luminaries with small sizes is very low.

• A common practice for path tracing
o Path tracing with direct lighting (sometimes referred to as path tracing with next event 

estimation)
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Path Tracing with Direct Lighting
• Ls 𝑥𝑥,𝑘𝑘𝑜𝑜 = LsD 𝑥𝑥,𝑘𝑘𝑜𝑜 + LsI 𝑥𝑥,𝑘𝑘𝑜𝑜

o direct lighting LsD 𝑥𝑥, 𝑘𝑘𝑜𝑜 + indirect lighting LsI 𝑥𝑥, 𝑘𝑘𝑜𝑜

• 𝐿𝐿𝑠𝑠D 𝑘𝑘𝑜𝑜 = ∫𝑎𝑎𝑙𝑙𝑙𝑙 𝑥𝑥′ in luminaries
𝜌𝜌 𝑘𝑘𝑖𝑖,𝑘𝑘𝑜𝑜 𝐿𝐿e 𝑥𝑥′,𝑥𝑥−𝑥𝑥′ 𝑣𝑣(𝑥𝑥,𝑥𝑥′)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑥𝑥−𝑥𝑥′
2 𝑑𝑑𝑑𝑑𝑑

o 𝐿𝐿e: emitted radiance

• 𝐿𝐿𝑠𝑠I 𝑘𝑘𝑜𝑜 = ∫𝑎𝑎𝑙𝑙𝑙𝑙 𝑘𝑘𝑖𝑖 𝜌𝜌 𝑘𝑘𝑖𝑖 , 𝑘𝑘𝑜𝑜 𝐿𝐿𝑓𝑓R 𝑘𝑘𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑑𝑑𝜎𝜎𝑖𝑖

o 𝐿𝐿𝑓𝑓R 𝑘𝑘𝑖𝑖 : field radiance (only reflected, i.e., not from luminaries)
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Path Tracing with Direct Lighting

• 𝐿𝐿𝑠𝑠D 𝑥𝑥, 𝑘𝑘𝑜𝑜 = ∫𝑎𝑎𝑙𝑙𝑙𝑙 𝑥𝑥′
𝜌𝜌 𝑘𝑘𝑖𝑖,𝑘𝑘𝑜𝑜 𝐿𝐿𝑒𝑒 𝑥𝑥′,−𝑘𝑘𝑖𝑖 𝑣𝑣(𝑥𝑥,𝑥𝑥′)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑥𝑥−𝑥𝑥′
2 𝑑𝑑𝑑𝑑𝑑

• Sample a point 𝑥𝑥′ on a luminaire with density function p (𝑥𝑥′~𝑝𝑝)

• 𝐿𝐿𝑠𝑠D 𝑥𝑥, 𝑘𝑘𝑜𝑜 ≈ 𝜌𝜌 𝑘𝑘𝑖𝑖,𝑘𝑘𝑜𝑜 𝐿𝐿𝑒𝑒 𝑥𝑥′,−𝑘𝑘𝑖𝑖 𝑣𝑣(𝑥𝑥,𝑥𝑥′)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑝𝑝 𝑥𝑥′ x – x’ 2

• Pick a uniform random point 𝑥𝑥′ from the luminaire
o 𝑝𝑝 = 1

𝐴𝐴
A is the area of the luminaire

o 𝐿𝐿𝑠𝑠D 𝑥𝑥, 𝑘𝑘𝑜𝑜 ≈ 𝜌𝜌 𝑘𝑘𝑖𝑖,𝑘𝑘𝑜𝑜 𝐿𝐿𝑒𝑒 𝑥𝑥′,−𝑘𝑘𝑖𝑖 𝑣𝑣 𝑥𝑥,𝑥𝑥′ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃′𝐴𝐴
x – x’ 2



Path Tracing with Direct Lighting
• Other details:

o Only applied when the surface point is non-specular.

o e.g., narrow BRDFs
 Sampling a point on luminaries is not effective

o Uses shadow rays for checking occlusions between the surface point and sampled light point 
Shadow rays 
 Usually faster than finding the first intersection

o Samples a point on luminaries can be done via inverse transform sampling when the shapes 
of luminaries are simple (e.g., spheres, triangles)
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Path Tracing with Direct Lighting

• 𝐿𝐿𝑠𝑠D 𝑥𝑥,𝑘𝑘𝑜𝑜 ≈ 𝜌𝜌 𝑘𝑘𝑖𝑖,𝑘𝑘𝑜𝑜 𝐿𝐿𝑒𝑒 𝑥𝑥′,−𝑘𝑘𝑖𝑖 𝑣𝑣(𝑥𝑥,𝑥𝑥′)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑝𝑝 𝑥𝑥′ x – x’ 2

• Multiple light sources are given:
o Generate one shadow ray per each light source, but this is not practical with many light sources

o A common choice is to pick only a point 𝑥𝑥′ and generate a shadow ray towards 𝑥𝑥′
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Path Tracing with Direct Lighting

• 𝐿𝐿𝑠𝑠D 𝑥𝑥,𝑘𝑘𝑜𝑜 ≈ 𝜌𝜌 𝑘𝑘𝑖𝑖,𝑘𝑘𝑜𝑜 𝐿𝐿𝑒𝑒 𝑥𝑥′,−𝑘𝑘𝑖𝑖 𝑣𝑣(𝑥𝑥,𝑥𝑥′)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑝𝑝 𝑥𝑥′ x – x’ 2

• Determining 𝑝𝑝 𝑥𝑥′ requires the following:
o 𝑝𝑝(x′) = p(l)p(x′|l)

 Probability of selecting a luminary l: p(l)

 Probability of sampling a point on the chosen light: p(x′|l)

o How to select a light source l:
 Uniform: the probability of selecting a light is equal.

 Spatial: set the probability proportional to the light power (assume that all lights are visible against a point)

 Visibility-aware selection: requires an estimation of visibility across surface points

 Light clustering is a well-known approach for many lights, e.g., thousands of lights
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Path Tracing with Direct Lighting
• Additional discussion:

o Sampling a point on luminaries is often effective for Lambertian surfaces but not very 
effective on highly glossy surfaces
 BRDF sampling for direct lighting can be better for such cases

 How to combine Light sampling and BRDF sampling?

 Multiple importance sampling (MIS) provides a solution; this will be covered later

o When is direct lighting effective?
 Intuitively, it is effective when lights are visible from most surfaces 

 A counter example
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Outline
• Path Tracing

• Path Tracing with Next Event Estimation

• Background: Density Estimation

• Photon Mapping

• Progressive Photon Mapping
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Density Estimation
• 𝑃𝑃 𝑎𝑎 < 𝑋𝑋 < 𝑏𝑏 = ∫𝑎𝑎

𝑏𝑏 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 for all a < b

• Problem:
o Input: a set of observed data points generated from an unknown probability density function (pdf)
o Output: an estimate of the pdf 

• A parametric approach:
o We assume the pdf is a known parametric family of distributions
o e.g., if we assume the samples are drawn from a normal distribution, we can estimate the mean 𝜇𝜇

and variance 𝜎𝜎2 with a sample mean and sample variance 



Density Estimation
• In practice,

o It is hard to employ the parametric approach as our target function (e.g., radiance) may be very 
complex

• Nonparametric approaches:
o Histograms

o Kernel estimator

o Nearest neighbor method



Histograms
• Input: n real data 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛

• Given an origin 𝑥𝑥0 and a bin width h, the bins of histograms are defined by the 

intervals [𝑥𝑥0 + 𝑚𝑚𝑚, 𝑥𝑥0 + 𝑚𝑚 + 1 ℎ), where m is an integer

• 𝑓𝑓 𝑥𝑥 = # 𝑜𝑜𝑜𝑜 𝑋𝑋𝑖𝑖 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎 𝑥𝑥
𝑛𝑛𝑛



Data
• Example: 100 random samples from a unknown pdf



Histograms

h=3
0

h=1
0



Histograms
• It discretizes the density function 

• The parameter h controls the amount of smoothing

• The number of bins grows exponentially as the dimensionality of the data increases 

• The density function has discontinuities at the bin boundaries



Kernel Estimator

• 𝑓𝑓 𝑥𝑥 = 1
𝑛𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝐾𝐾 𝑥𝑥−𝑋𝑋𝑖𝑖

ℎ
o h: window width (smoothing parameter, bandwidth)
o K is a kernel function

 ∫−∞
∞ 𝐾𝐾 𝑥𝑥 𝑑𝑑𝑑𝑑 = 1

o Intuitively,
 Place a bump at each observation

 Kernel estimator is a sum of bumps



Kernel Estimator

h=1 h=5



Kernel Estimator
• 𝑓𝑓 𝑥𝑥 inherits all the continuity and differentiability properties of K 

• e.g., when K is the normal density function, 𝑓𝑓 𝑥𝑥 will be a smooth curve

• The parameter h controls the amount of smoothing



Nearest Neighbor Method
• Adapt the amount of smoothing to the local density of data

• The generalized kth nearest neighbor density estimate:

• 𝑓𝑓 𝑡𝑡 = 1
𝑛𝑛𝑑𝑑𝑘𝑘(𝑡𝑡)

∑𝑖𝑖=1𝑛𝑛 𝐾𝐾 𝑡𝑡−𝑋𝑋𝑖𝑖
𝑑𝑑𝑘𝑘(𝑡𝑡)

o 𝑑𝑑𝑘𝑘(𝑡𝑡): kth nearest distance from the query point, t



Variable Kernel Method

• 𝑓𝑓 𝑥𝑥 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 1

ℎ𝑑𝑑𝑖𝑖,𝑘𝑘
𝐾𝐾 𝑥𝑥−𝑋𝑋𝑖𝑖

ℎ𝑑𝑑𝑖𝑖,𝑘𝑘

• 𝑑𝑑𝑖𝑖,𝑘𝑘: distance from 𝑋𝑋𝑖𝑖 to the kth nearest point
o Note that the window width is independent of query points

• The window width of the kernel placed on the point  𝑋𝑋𝑖𝑖 is proportional to 𝑑𝑑𝑖𝑖,𝑘𝑘

• It considers the local density of observed data



General Weight Function
• 𝑓𝑓 𝑥𝑥 = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑤𝑤(𝑋𝑋𝑖𝑖 , 𝑡𝑡)

o ∫−∞
∞ 𝑤𝑤 𝑥𝑥, 𝑦𝑦 𝑑𝑑𝑦𝑦 = 1

o 𝑤𝑤 𝑥𝑥,𝑦𝑦 ≥ 0 for all x and y

o e.g. histogram

 𝑤𝑤 𝑥𝑥,𝑦𝑦 = 1
ℎ 𝑥𝑥

if x and y are in the same bin

 𝑤𝑤 𝑥𝑥,𝑦𝑦 = 0 otherwise



Discussion
• Choice of Kernels

o Epanechnikov

 𝐾𝐾 𝑡𝑡 =
0.75 1− 1

5𝑡𝑡2

5
for 𝑡𝑡 < 5

 𝐾𝐾 𝑡𝑡 = 0 otherwise

o Biweight

 𝐾𝐾 𝑡𝑡 = 15
16

1 − 𝑡𝑡2 2 for 𝑡𝑡 < 1

 𝐾𝐾 𝑡𝑡 = 0 otherwise

o Gaussian

 𝐾𝐾 𝑡𝑡 = 1
2𝜋𝜋
𝑒𝑒−0.5𝑡𝑡2



Discussion
• Choice of Smoothing Parameters

o Manual choices: visualize density estimation results with different parameters and select a 
proper one

o Automatic choices: select optimal parameters that minimize errors



Error Estimation for Density Estimation
• Mean Squared Error (MSE) at a single point, t

o 𝑀𝑀𝑀𝑀𝐸𝐸𝑡𝑡 𝑓𝑓 = 𝐸𝐸 𝑓𝑓 𝑡𝑡 − 𝑓𝑓 𝑡𝑡
2

= 𝐸𝐸 𝑓𝑓 𝑡𝑡 − 𝑓𝑓 𝑡𝑡
2

+ 𝑉𝑉 𝑓𝑓 𝑡𝑡

o 𝐸𝐸 𝑓𝑓 𝑡𝑡 = 1
𝑛𝑛
∑𝐸𝐸 𝑤𝑤 𝑋𝑋𝑖𝑖 , 𝑡𝑡 = ∫𝑤𝑤 𝑥𝑥, 𝑡𝑡 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 (Silverman 1986, 36pp)

o 𝑉𝑉 𝑓𝑓 𝑡𝑡 = 1
𝑛𝑛
𝑉𝑉 𝑤𝑤 𝑋𝑋𝑖𝑖 , 𝑡𝑡 = 1

𝑛𝑛 ∫𝑤𝑤 𝑥𝑥, 𝑡𝑡 2𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 − {∫𝑤𝑤 𝑥𝑥, 𝑡𝑡 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑} 2

o The bias, 𝐸𝐸 𝑓𝑓 𝑡𝑡 − 𝑓𝑓 𝑡𝑡 , does not depend on the sample size, n

o The variance, 𝑉𝑉 𝑓𝑓 𝑡𝑡 , decreases as we use more samples



Error Estimation for Density Estimation
• Asymptotic version (Silverman 1986, 39pp) for univariate data

o 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠ℎ 𝑥𝑥 = 𝐸𝐸 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑥𝑥 ≈ 1
2
ℎ2𝑓𝑓′′ 𝑥𝑥 𝑘𝑘2 (derived using Taylor expansion)

o 𝑉𝑉 𝑓𝑓 𝑥𝑥 ≈ 𝑛𝑛−1ℎ−1𝑓𝑓 𝑥𝑥 ∫𝐾𝐾 𝑡𝑡 2 𝑑𝑑𝑑𝑑

• A trade-off between bias and variance

• In practice,
o We need a way to estimate unknown terms 𝑓𝑓 𝑥𝑥 , 𝑓𝑓′′ 𝑥𝑥



Discussion
• Radiance estimation in (progressive) photon mapping is an application of the 

density estimation

• The radius of the radiance estimation is related to the error terms

• Q. Can we choose an optimal radius in a data-driven way? 



Outline
• Path Tracing

• Path Tracing with Next Event Estimation

• Background: Density Estimation

• Photon Mapping

• Progressive Photon Mapping
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Photon Mapping
• [Jensen 1996]

• A two-pass rendering method
o 1. build a photon map

o 2. render an image using the map



Photon Mapping

[Christensen and Jensen, SIGGRAPH 2000 course]



Photon Mapping
• A two-pass rendering method

o 1. (photon tracing) Build a photon map

o 2. (radiance estimation) Render an image using the map



Photon Mapping
• Photon emission

o Photons are generated from light sources
o Each photon carries a fraction of the power of a light source

 Each photon carries a color: ΔΦj =
Φ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑛𝑛𝑒𝑒
where 𝑛𝑛𝑒𝑒 is the number of emitted photons

• Structures of a photon 
o 3D position
o A fraction of the power
o Incident direction

• Multiple light sources?
o Each light source emits photons
o Brighter light sources can emit more photons than the others



Photon Scattering
• Photon tracing employs a ray tracing procedure:

o If a photon hits a surface, it will be reflected or absorbed

• In practice, a Russian Roulette (RR) is used 
o RR is a stochastic technique to determine whether a photon is reflected or not 

o RR is widely used in Monte Carlo ray tracing methods

o It improves efficiency by increasing the likelihood that samples can have high contributions

o Technical details of RR will be given later



Photon Scattering
• Photon tracing employs a ray tracing procedure:

o If a photon hits,
 𝑝𝑝 = 𝑑𝑑 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

 𝜉𝜉 ∈ [0,1] (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

 𝑖𝑖𝑖𝑖 𝜉𝜉 < 𝑝𝑝
 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Φ𝑝𝑝

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎



Photon Storing
• Store photons when they hit non-specular surfaces

o Do not need to store them for specular reflection (e.g., reflection on mirrors)

• An emitted photon can be stored several times along its path

• A tree structure (kd-trees) is used to maintain the photons
o This will be utilized for searching neighboring photons in the second step



Photon Mapping
• A two-pass rendering method

o 1. (photon tracing) build a photon map

o 2. (radiance estimation) render an image using the map



Radiance Estimation
• Need to estimate radiance at query points

o Relation: 𝐿𝐿𝑓𝑓 𝑘𝑘𝑖𝑖 = ΔΦ
Δ𝐴𝐴𝐴𝐴𝐴𝜃𝜃iΔ𝜎𝜎

• 𝐿𝐿𝑠𝑠 𝑘𝑘𝑜𝑜 = ∫𝑎𝑎𝑙𝑙𝑙𝑙 𝑘𝑘𝑖𝑖 𝜌𝜌 𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑜𝑜 𝐿𝐿𝑓𝑓 𝑘𝑘𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑑𝑑𝜎𝜎𝑖𝑖

• Δ𝐴𝐴 = 𝜋𝜋𝑟𝑟2

o Assume a locally flat surface around x

o The radius 𝑟𝑟 can be set using the k-nearest neighbor search, i.e., the k-th largest distance between a query 
point and the positions of photons

• 𝐿𝐿𝑠𝑠 𝑘𝑘𝑜𝑜 ≈ ∑i=1𝑁𝑁 𝜌𝜌 𝑘𝑘i,𝑘𝑘𝑜𝑜
ΔΦi

𝜋𝜋𝑟𝑟2cos𝜃𝜃iΔ𝜎𝜎i
cos𝜃𝜃iΔ𝜎𝜎i = ∑i=1𝑁𝑁 𝜌𝜌 𝑘𝑘i, 𝑘𝑘𝑜𝑜

ΔΦi
𝜋𝜋𝑟𝑟2

[Christensen and Jensen, SIGGRAPH 2000 course]



Radiance Estimation
• 𝐿𝐿𝑠𝑠 𝑘𝑘𝑜𝑜 ≈ 1

𝜋𝜋𝑟𝑟2
∑i=1𝑁𝑁 𝜌𝜌 𝑘𝑘i, 𝑘𝑘𝑜𝑜 ΔΦi

• When assumptions (e.g., locally flat surfaces) are valid, and the number of photons is infinite, the 

approximation error will be zero

• Discussion:
o Photons are view-independent, and thus one can reuse the photons when the camera animates

o Q. Can we store an infinite number of photons?

 If not, is there any way to accomplish the consistency?



Outline
• Path Tracing

• Path Tracing with Next Event Estimation

• Background: Density Estimation

• Photon Mapping

• Progressive Photon Mapping
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Radiance Estimation
• 𝐿𝐿𝑠𝑠 𝑘𝑘𝑜𝑜 ≈ 1

𝜋𝜋𝑟𝑟2
∑i=1𝑁𝑁 𝜌𝜌 𝑘𝑘i, 𝑘𝑘𝑜𝑜 ΔΦi

• When the number of photons goes infinite (and thus 𝑟𝑟 → 0), it converges to the correct solution 

(consistent)
o In practice, we cannot store an infinite number of photons due to a finite memory space



Progressive Photon Mapping
• SIGA 2008, Hachisuka et al. 

Images from [Hachisuka et al. 08]



Progressive Photon Mapping
• Multi-pass rendering method

o 1st pass
 Query points are generated from the eye

o Refinement passes: 
 Photon tracing

 Progressive radiance estimation



Progressive Photon Mapping
• Photon Mapping

o 𝐿𝐿s 𝑥𝑥, 𝑘𝑘𝑜𝑜 = 1
𝜋𝜋𝑟𝑟(𝑥𝑥)2

∑𝑝𝑝=1𝑁𝑁 𝜌𝜌 𝑥𝑥, 𝑘𝑘𝑝𝑝, 𝑘𝑘𝑜𝑜 ΔΦ𝑝𝑝 𝑥𝑥, 𝑘𝑘𝑝𝑝

• Progressive Photon Mapping
o 𝐿𝐿s0 𝑥𝑥, 𝑘𝑘𝑜𝑜 = 1

𝜋𝜋𝑟𝑟0 𝑥𝑥 2 ∑𝑝𝑝=1
𝑁𝑁0 𝜌𝜌 𝑥𝑥, 𝑘𝑘𝑝𝑝, 𝑘𝑘𝑜𝑜 ΔΦ𝑝𝑝 𝑥𝑥, 𝑘𝑘𝑝𝑝

o 𝐿𝐿s1 𝑥𝑥, 𝑘𝑘𝑜𝑜 = 1
𝜋𝜋𝑟𝑟1 𝑥𝑥 2 ∑𝑝𝑝=1

𝑁𝑁1 𝜌𝜌 𝑥𝑥, 𝑘𝑘𝑝𝑝, 𝑘𝑘𝑜𝑜 ΔΦ𝑝𝑝 𝑥𝑥, 𝑘𝑘𝑝𝑝
o …

o 𝐿𝐿s𝑖𝑖 𝑥𝑥, 𝑘𝑘𝑜𝑜 = 1
𝜋𝜋𝑟𝑟𝑖𝑖 𝑥𝑥 2 ∑𝑝𝑝=1

𝑁𝑁𝑖𝑖 𝜌𝜌 𝑥𝑥, 𝑘𝑘𝑝𝑝, 𝑘𝑘𝑜𝑜 ΔΦ𝑝𝑝 𝑥𝑥, 𝑘𝑘𝑝𝑝
o …



Progressive Photon Mapping
• Progressive Photon Mapping

o 𝐿𝐿𝑟𝑟𝑖𝑖 𝑥𝑥, 𝑘𝑘𝑜𝑜 = 1
𝜋𝜋𝑟𝑟𝑖𝑖 𝑥𝑥 2 ∑𝑝𝑝=1

𝑁𝑁𝑖𝑖 𝜌𝜌 𝑥𝑥, 𝑘𝑘𝑝𝑝, 𝑘𝑘𝑜𝑜 ΔΦ𝑝𝑝 𝑥𝑥, 𝑘𝑘𝑝𝑝

o lim
𝑖𝑖→∞

𝐿𝐿𝑟𝑟𝑖𝑖 𝑥𝑥, 𝑘𝑘𝑜𝑜 = 𝐿𝐿(𝑥𝑥, 𝑘𝑘𝑜𝑜)

o Key properties for consistency:
 𝑟𝑟𝑖𝑖+1(𝑥𝑥) < 𝑟𝑟𝑖𝑖(𝑥𝑥)
 𝑁𝑁𝑖𝑖+1 > 𝑁𝑁𝑖𝑖



Progressive Photon Mapping
• PPM assumes the photon density is locally uniform 

• Reduce the radius of each hit point while accumulating newly added photons 



Progressive Photon Mapping
• PPM assumes the photon density is locally uniform 

• Reduce the radius of each hit point while accumulating newly added photons 

• 𝑁𝑁𝑖𝑖+𝑀𝑀𝑖𝑖
𝜋𝜋𝑟𝑟𝑖𝑖

2 = 𝑁𝑁𝑖𝑖+1
𝜋𝜋𝑟𝑟𝑖𝑖+1

2

• 𝑁𝑁𝑖𝑖+1 = 𝑁𝑁𝑖𝑖 + 𝛼𝛼𝑀𝑀𝑖𝑖
o 𝑁𝑁𝑖𝑖: # of photons in the previous steps

o 𝑀𝑀𝑖𝑖: # of photons in the current step

o 𝛼𝛼: a fraction of newly added photons to keep 

• 𝑁𝑁𝑖𝑖+𝑀𝑀𝑖𝑖
𝜋𝜋𝑟𝑟𝑖𝑖

2 = 𝑁𝑁𝑖𝑖+𝛼𝛼𝑀𝑀𝑖𝑖
𝜋𝜋𝑟𝑟𝑖𝑖+1

2

• 𝑟𝑟𝑖𝑖+1 = 𝑟𝑟𝑖𝑖
𝑁𝑁𝑖𝑖+𝛼𝛼𝑀𝑀𝑖𝑖
𝑁𝑁𝑖𝑖+𝑀𝑀𝑖𝑖

Image from [Hachisuka et al. 2008]



Progressive Photon Mapping
• Flux correction

o 𝜏𝜏𝑁𝑁𝑖𝑖 𝑥𝑥, 𝑘𝑘𝑜𝑜 = ∑𝑝𝑝=1
𝑁𝑁𝑖𝑖 𝜌𝜌 𝑥𝑥, 𝑘𝑘𝑝𝑝, 𝑘𝑘𝑜𝑜 ΔΦ𝑝𝑝 𝑥𝑥, 𝑘𝑘𝑝𝑝

o 𝜏𝜏𝑀𝑀𝑖𝑖 𝑥𝑥, 𝑘𝑘𝑜𝑜 = ∑𝑝𝑝=1
𝑀𝑀𝑖𝑖 𝜌𝜌 𝑥𝑥, 𝑘𝑘𝑝𝑝, 𝑘𝑘𝑜𝑜 ΔΦ𝑝𝑝 𝑥𝑥, 𝑘𝑘𝑝𝑝

o 𝜏𝜏𝑁𝑁𝑖𝑖+1 𝑥𝑥, 𝑘𝑘𝑜𝑜 = 𝜏𝜏𝑁𝑁𝑖𝑖 𝑥𝑥, 𝑘𝑘𝑜𝑜 + 𝜏𝜏𝑀𝑀𝑖𝑖 𝑥𝑥, 𝑘𝑘𝑜𝑜
𝑁𝑁𝑖𝑖+𝛼𝛼𝑀𝑀𝑖𝑖
𝑁𝑁𝑖𝑖+𝑀𝑀𝑖𝑖

• Radiance 
o 𝐿𝐿𝑟𝑟𝑖𝑖 𝑥𝑥, 𝑘𝑘𝑜𝑜 = 1

𝜋𝜋𝑟𝑟𝑖𝑖
2 × 𝜏𝜏𝑁𝑁𝑖𝑖

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 # 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝



Progressive Photon Mapping
• 1st pass

o Generate hit points 



Progressive Photon Mapping
• 1st Refinement pass

o Generate photons 



Progressive Photon Mapping
• 1st Refinement pass

o Generate photons 



Progressive Photon Mapping
• 2nd Refinement pass

o Generate photons 



Progressive Photon Mapping
• 2nd Refinement pass

o Generate photons 



Progressive Photon Mapping
• Rendering



PPM Results

Image from [Hachisuka et al. 2008]



PPM Results

Image from [Hachisuka et al. 2008]



Further Reading
• Discussion:

o PPM is a view-dependent rendering, so photons should be generated per frame

• Distributed effects?
o # of hit points can introduce a memory issue, especially for distributed effects

o Stochastic Progressive Photon Mapping, Hachisuka et al., SIGA09
 Shared hit points per pixel

• Bandwidth (i.e., kernel radius) optimizations:
o APPM: Adaptive Progressive Photon Mapping, Kaplanyan and Dachsbacher et al. 2012

o CPPM: Chi-squared Progressive Photon Mapping, Lin et al. 2020
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