CT5201: Computer Graphics and its Applications

Introduction

Lecturer: Bochang Moon

Information

- Instructor: Bochang Moon
- Email: <u>bmoon@gist.ac.kr</u>
- Office: 106 Dasan Building
- Office hours
 - 16:00 − 18:00pm on Mon. or by appointment (via email)
- Class time
 - 14:30 16:00pm on Mon. and Wed.

- Modeling
 - A technique to deal with mathematical specification of shape and appearance that can be stored in computers

e.g., triangle mesh

- Rendering
 - A algorithm to generate digital images from 3D models

3D model

Rendered image

- Animation
 - Address how to create motion of virtual models over time

- Core areas
 - Modeling
 - Rendering
 - Animation
- Other areas
 - User Interface
 - Virtual Reality
 - Visualization
 - Image Processing
 - 3D scanning
 - Computational photography
 - etc.

3D Animation

Visual Effects in Movies

Games

Augmented and virtual reality

Visualization

Course Overview

- Target Applications
 - 1. Physically-based AR rendering
 - · Warning! Image composition via empirical models will not be covered here
 - 2. Physically-based inverse rendering (differentiable rendering)
 - Warning! We will not cover empirical model-based inverse rendering (rasterization / Neural Radiance Fields (NeRF))
- Student paper presentation for graphics applications
- Student project

Course Overview

- A Quick Overview of Photorealistic Rendering
- Rendering Application (AR & Differentiable Rendering)
- Paper Presentation I, II
- Project Proposal Talk & Final Presentation

- You should:
 - 1) Pick either AR rendering or differentiable rendering for your project
 - 2) Present two recent papers related to your topic
 - 3) Do a proposal talk and a final talk
 - 4) Write a technical report

Prerequisite

- Should take an undergraduate computer graphics course (or have an equivalent background), e.g., CT4201/EC4215 Computer Graphics
- Checklist
 - 1) You know the technical details in a graphics pipeline
 - 2) You are familiar with ray tracing
 - 3) You have programming experience with open-source ray tracing (e.g., PBRT or Mitsuba)
 - If you have "NO" for any of the lists above, please take other courses

References

- Papers
 - (Graphics) SIGGRAPH, SIGGRAPH Asia (http://kesen.realtimerendering.com/)
 - (Visualization) IEEE Transactions on Visualization and Computer Graphics
 - (AR & VR) International Symposium on Mixed and Augmented Reality (ISMAR)
 - (AR & VR) IEEE VR
 - (Vision) CVPR, ICCV, ECCV

Grading

- Paper presentation (Q&A discussion): 40%
- Project presentation: 20%
- Final exam (or final report): 30%

- Attendance: 10%
 - No absences: 10, One absences: 9, Two absences: 7, Three absences: 4
 - Four or more absences: 0
 - Late two times: one absence
 - I will call your name at the beginning of the class