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Overview
• Study important techniques to improve efficiency of MC estimators

• An efficiency measure for estimators F
◦ 𝑒𝑒 𝐹𝐹 = 1

𝑉𝑉 𝐹𝐹 𝑇𝑇(𝐹𝐹)

◦ To improve efficiency, we need to reduce the variance and time

• Russian Roulette

• Splitting

• Importance Sampling



Russian Roulette
• e.g. direct lighting
◦ 𝐿𝐿𝑠𝑠 𝑥𝑥, 𝑘𝑘𝑜𝑜 = ∫𝑎𝑎𝑙𝑙𝑙𝑙 𝑥𝑥′

𝜌𝜌 𝑘𝑘𝑖𝑖,𝑘𝑘𝑜𝑜 𝐿𝐿𝑒𝑒 𝑥𝑥′,−𝑘𝑘𝑖𝑖 𝑣𝑣(𝑥𝑥,𝑥𝑥′)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑥𝑥−𝑥𝑥′
2 𝑑𝑑𝑑𝑑𝑑

◦ ≈ 1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝜌𝜌 𝑘𝑘𝑖𝑖,𝑘𝑘𝑜𝑜 𝐿𝐿𝑒𝑒 𝑥𝑥′,−𝑘𝑘𝑖𝑖 𝑣𝑣 𝑥𝑥,𝑥𝑥′ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃′𝐴𝐴

𝑝𝑝(𝑥𝑥′) 𝑥𝑥−𝑥𝑥′
2

• Problems
◦ Expensive to compute 𝑣𝑣 𝑥𝑥, 𝑥𝑥′

◦ Let suppose that there are some directions 𝑘𝑘𝑜𝑜 where the 
integrand’s value is almost 0 due to 𝜌𝜌 𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑜𝑜 ≈ 0
◦ In this case, evaluating 𝑣𝑣 𝑥𝑥, 𝑥𝑥′ is not a good idea, as it decreases the 

efficiency

◦ Q. Can we somehow skip these directions while maintaining a 
correct answer?
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Russian Roulette
• Given an estimator 𝐹𝐹, a new estimator 𝐹𝐹′ with Russian Roulette can be given:

◦ 𝐹𝐹′ = �
𝐹𝐹−𝑞𝑞𝑞𝑞
1−𝑞𝑞

𝜉𝜉 > 𝑞𝑞
𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

◦ 𝑞𝑞: termination probability
◦ c is usually chosen as 0

• Consistency check
◦ 𝐸𝐸 𝐹𝐹′ = 1 − 𝑞𝑞 𝐸𝐸(𝐹𝐹)−𝑞𝑞𝑞𝑞

1−𝑞𝑞
+ 𝑞𝑞𝑞𝑞 = 𝐸𝐸(𝐹𝐹)

• Properties
◦ It does not reduce variance, but improves efficiency by skipping unimportant parts 



Russian Roulette
• Examples 
◦ 𝐿𝐿𝑠𝑠 𝑘𝑘𝑜𝑜 ≈ 𝐿𝐿𝑒𝑒 𝑘𝑘𝑜𝑜 + 𝜌𝜌 𝑘𝑘𝑖𝑖,𝑘𝑘𝑜𝑜 𝐿𝐿𝑓𝑓 𝑘𝑘𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑑𝑑𝜎𝜎𝑖𝑖

𝑝𝑝(𝑘𝑘𝑖𝑖)

◦ Problem: this is a recursive form, so ray depth can be infinite
◦ Can apply the Russian Roulette to path tracing so that the ray depth can be reduced

◦ 𝐹𝐹′ = �
𝐹𝐹−𝑞𝑞𝑞𝑞
1−𝑞𝑞

𝜉𝜉 > 𝑞𝑞
𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

◦ Given a termination probability 𝑞𝑞 = 0.5 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐 = 0, we can terminate the reflection 
with the probability. In this case, we need to scale the radiance value with 1

1−𝑞𝑞



Russian Roulette
• Bad examples
◦ Apply this to the camera rays with a termination probability 𝑞𝑞 = 0.99
◦ In this case,

◦ Only trace 1% of the camera rays
◦ Most of pixels are black and a few pixels are very bright, although its expectation is still correct
◦ The variance of the estimator will be much higher than the original estimator

• Efficiency-optimized Russian roulette
◦ A technique that optimizes the parameter



Splitting
• Splitting is a technique to increase the number of samples for improving the 

efficiency
◦ Allocate more rays to important dimensions

• E.g., direct lighting with a shortened version
◦ ∫𝐴𝐴 ∫𝑆𝑆 𝐿𝐿𝑑𝑑 𝑥𝑥,𝑦𝑦,𝑤𝑤 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
◦ A: pixel area
◦ S: light area
◦ 𝐿𝐿𝑑𝑑: exitant radiance at the intersection point 
◦ (x, y): position on image
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Splitting
• direct lighting with a shortened version
◦ ∫𝐴𝐴 ∫𝑆𝑆 𝐿𝐿𝑑𝑑 𝑥𝑥,𝑦𝑦,𝑤𝑤 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

• A straightforward approach:
◦ Generate N samples 𝑥𝑥1,𝑦𝑦1,𝑤𝑤1 , … (𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁,𝑤𝑤𝑁𝑁)
◦ Evaluate 𝐿𝐿𝑑𝑑 𝑥𝑥1,𝑦𝑦1,𝑤𝑤1 , … , 𝐿𝐿𝑑𝑑 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁,𝑤𝑤𝑁𝑁

◦ Need to generate N shadow rays

◦ Average the radiance values

• Typically need a lot of samples given a large area light or many point lights 
◦ e.g., N = 100, 200 rays will be used (100 primary rays, 100 shadow rays)
◦ Issue: 100 primary rays are often too much for a good antialiasing. Can we focus on 



Splitting
• Typically need a lot of samples given a large area light or many point lights 
◦ e.g., N = 100, 200 rays will be used (100 primary rays, 100 shadow rays)
◦ Issue: 100 primary rays are often too many for a good antialiasing. 
◦ Splitting

◦ 1
𝑁𝑁
1
𝑀𝑀
∑𝑖𝑖=1𝑁𝑁 ∑𝑗𝑗=1𝑀𝑀 𝐿𝐿 𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖,𝑤𝑤𝑖𝑖,𝑗𝑗

𝑝𝑝 𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 𝑝𝑝 𝑤𝑤𝑖𝑖,𝑗𝑗

◦ Are able to use 5 image samples and take 20 light samples per image sample. Total ray # = 5 + 5 x 20 = 105
◦ Still use 100 shadow rays for high-quality soft shadows, but the total number of rays is reduced

4 shadow rays / 
pixel

16 shadow rays / 
pixel

64 shadow rays / 
pixel



Importance Sampling
• A variance reduction technique for Monte Carlo estimators
◦ Allocate more samples to the important region where the integrand's value is high

• A Monte Carlo estimator:
◦ 𝐹𝐹𝑁𝑁 = 1

𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝑓𝑓 𝑋𝑋𝑖𝑖

𝑝𝑝(𝑋𝑋𝑖𝑖)

• e.g., 𝐿𝐿𝑠𝑠 𝑘𝑘𝑜𝑜 ≈ 𝐿𝐿𝑒𝑒 𝑘𝑘𝑜𝑜 + 𝜌𝜌 𝑘𝑘𝑖𝑖,𝑘𝑘𝑜𝑜 𝐿𝐿𝑓𝑓 𝑘𝑘𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑑𝑑𝜎𝜎𝑖𝑖
𝑝𝑝 𝑘𝑘𝑖𝑖

◦ An intuition is that if we take more samples in terms of 𝑘𝑘𝑖𝑖 that makes 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 high, we 
can reduce the variance of the estimator



Importance Sampling
• e.g., Evaluate an integral ∫𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑

• Note that we can choose an arbitrary pdf, 𝑝𝑝(𝑥𝑥)
• What if we choose 𝑝𝑝 𝑥𝑥 ∝ 𝑓𝑓(𝑥𝑥) or 𝑝𝑝 𝑥𝑥 = 𝑐𝑐𝑐𝑐 𝑥𝑥
◦ 𝑐𝑐 = 1

∫ 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑
a constant for normalization

◦ 𝐹𝐹𝑁𝑁 = 1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝑓𝑓 𝑋𝑋𝑖𝑖

𝑝𝑝(𝑋𝑋𝑖𝑖)
= 1

𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 1

𝑐𝑐

◦ 𝑉𝑉 𝐹𝐹𝑁𝑁 = 0

• Notes
◦ In practice, we cannot choose 𝑝𝑝 𝑥𝑥 in this way, but it provides some intuition
◦ If we choose 𝑝𝑝 𝑥𝑥 similarly compared to the shape of 𝑓𝑓 𝑥𝑥 , we are able to reduce 

variance



Importance Sampling
• A counterexample:

◦ Evaluate an integral ∫𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑

◦ 𝑝𝑝 𝑥𝑥 = �
99.01 𝑥𝑥 ∈ [0,0.01)
0.01 𝑥𝑥 ∈ [0.01,1]

◦ 𝑓𝑓 𝑥𝑥 = �
0.01 𝑥𝑥 ∈ [0,0.01)
1.01 𝑥𝑥 ∈ [0.01,1]

◦ ∫𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 = 1

◦ Most of samples will be taken from [0,0.01), and 𝑓𝑓 𝑋𝑋𝑖𝑖
𝑝𝑝(𝑋𝑋𝑖𝑖)

≈ 0.0001 which is far from 1 

◦ In this case, the variance will increase a lot

• Note
◦ In practice, it is easy to apply an important sampling to the rendering, by considering only some terms
◦ Taking account for all terms is ideal but this can be very challenging



More Advanced Topics?
• Evaluate an integral ∫𝑓𝑓 𝑥𝑥 𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑

• If we have each important sampling scheme for the functions 𝑓𝑓 𝑥𝑥 and 𝑔𝑔 𝑥𝑥 , 
how can we combine the techniques?

• Multiple important sampling addresses this issue and this will be discussed 
later  
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